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Abstract

This thesis presents the design of a set of recovery mechanisms for the Swallow repository.
Swallow is a distributed data storage system that supports highly reliable fong term storage
of arbitrary sized data objects with special mechanisims for implementing multi-site atomic
actions. The Swallow repository is a data storage server that keeps permanent data in write-
once stable storage such as optical disk.

The recovery mechanisms provide on-line recovery for the repository’s internal diata, as the
repository proceeds with its normal operations. In this way, users that wish to access any
daia that was not aflected by the crash can do so while the damaged data is being recovered.
Incdduded in the repository’'s recovery mechanisms are recovery epochs and checkpoint
epochs. which facilitate the detection of damage to the data and minimize the amount of
recovery that is necessary.  Also included are specialized hash table algorithms that are
immune to repository failures.  In addition o deseribing these mechanisms, this thesis
discusses how they suppori the global recovery mechanisms of Swallow and analyzes how
they will affect the repository’s gencral performance.
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Chapter One

Introduction

As nctwork communications become faster and cheaper it becomes more practical for a
single computer. or node. in a distributed computing network to maintain only the resources
that it can afford to dedicate. and - obtain all other resources that it may need from other
nodes that provide them through the network. In this way. the network provides the benefit
of cconomy of scale through sharing..  Long term storage and printing devices are eaxamples
of resources that may be shared throughout the network.  The nodes that provide the
resources are called servers while the nodes that share and utilize these resources are calied

clients.

Swallow [16]. being developed at MLLT . is an integrated system of servers that provides
reliable. secure and efficient storage for clients throughout a network. The components of
Swallow are repositorics, authentication servers and brokers. A repository is a scrver that
provides very reliable storage for client data in Swallow. It is a processor that is connected
to a configuration of storage devices. An authentication server acts as intermediary to ensure
that all communications within Swallow are sccure.! A broker is a module in the client node
that acts as an interpreter for client requests. It mediates interactions between the clients
and scrvers in Swallow.  Figure 1-1 shows the gencral configuration of Swallow in

relationship to its clients,

Swallow has several basic features, First, it provides extremely reliable storage. Thus, the
probability that any client objects will ever be lost is near zero. Sceond, Swallow enables the
clients to perform any number of accesses (read and write) on an arbitrary set of objects as a

single. indivisible (atomic) operation. Third. Swallow protects alt objects from unauthorized

! The authentication server is nol directly relevant to this thesis so it witl not be discussed any further. All
future references o the components of Swallow include only brokers and repositories.
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B = broker AS = authentication server i
R = repository }
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Figure 1-1: Configuration of Swallow
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access, using encryption-based mechanisms. Fourth, Swallow, provides a uniform interface

for accessing the objects, which may be distributed over & local node and/or several remote
repositories. In effect. the clients can specify where they would like cach object to be stored,
but need not remember the location in order to access the object. Finally, Swallow supports
objects of any size. and in particular, very small objects. Thus. Swallow gives the client
flexibility in structuring and managing its data, since each object is treated as a separate
entity with respect to protection and synchronization as well as with respect to storage and

retrieval.

In order to provide these teatures, Swallow must preserve consistency Hetween all related
client data (which may be distributed over several nodes).  For exemple, suppose an
appointment scheduling system is a client of Swallow that sets up mectings between people
by reserving time slots in their personal calendars,  Regardless of where these personal
calendars are stored (i.c.. in one or more repositories). Swallow must ensure that the
calendars are always consistent with one another.  In other words, if, as the scheduler is
modifying 2 calendars (in order 1o set up a meeting), the repository in which one (or both)
calendar is stored crashes. then either both calendars should reflect the appointment or clse
ncither calendar should reflect the appointment. The state of these 2 calendars, in which
only onc of them is modified, is internal o Swallow and should never be exposcd to the
appointment scheduler or any other client that accesses the calendars. Swallow ensures this
consistency between related client data by providing a standard sct of protocols for all
interactions between the brokers and servers, as well as for global recovery. The undcerlying
mechanisms for these protocols and global recovery are based on those developed by Reed
[14, 15].

In order for the Swallow protocols and global recovery to be effective, all repositories in
Swallow must survive both their own failures and those of other Swallow nodes.  This
means that all data stored within a repository must remain internally consistent, regardless
of any errors that may occur duc o an internal failure or the failure of another node. For
cxample, within the repository, an object consists of an object header plus the object, itself,

In order to update a single object, the repository must modily both the object header and

12
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the object as well as a commit record, which is used to synchronize accesses to the object.
Thus, even it the repository crashes in the midst of making these changes. the repository
must recover itself to a state in which the object header. object and commit record are
consistent with cach other. that is. cither the state before the update began or the state after
the update is completed.  In addition, the internal recovery of the repository must support
the global recovery mechanisms descloped by Reed [14. 15] which restore all related client

objects commit records o a consistent state.

This thesis provides the internal nechanisms by which the repository restores its internal
state, and integrates these internal mechanisms with the general recovery mechanisms of

Swatlow in order to show that the recovery of the repository is complete.

1.1 Related Work

WIS [19]. Juniper [6] and CFES [1] are other systems that arc comparable to Swallow.
Each system provides long-term storage in a distributed computing network, but does not

have all of the same basic features as Swallow (described on page 10).

WIS was designed to be a more primitive storage system than Swallow. It is a single file
server as opposed to a collection of one or more of various types of servers, as in Swallow.
Unlike Swallow, WES docs not provide a uniform interface to any data distributed over the
local node and the remote file server nor does it restrict access to the data and ensure secure
communications. Also, Swallow provides access to objects of any size that do not have to be
viewed as standard "files”, and provides atomic actions for any arbitrary set of these objects.
WES, on the other hand, provides page level access to files and only ensures atomicity of
operations that are exccuted on a single page (although a system that runs at the client node
to provide atomic actions for multiple page and multiple file operations can coexist with
WIS [11)).

Juniper is more like Swallow in that it is a distributed data storage system (consists of
more than one data storage server) and enables the client to perform atomic actions over

multiple data objccts at multiple sites, but it still does not have all of the features that
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Swallow has.  First, Juniper does not provide a uniform interface to data distributed over
the local and remote nodcs, or to any other types of servers (eg.. authentication server),
Thus, in order to obtain additional but related services. the client must interface with a
different system. Note, though. that plans are in the works to make a system, the Cedar file
system, that uses Juniper as a component in a system of structure similar to Swallow,
Second. although Juniper provides access o arbitrary sequences of bytes, it does not
provide atomic actions for multiple arbitrary sequences of bytes. as does Swallow,  In
Juniper. the smallest unit that can be treated as a separate entity with respect o an atomic
action. 18 a page.  This means that : tomic actions can only be pertormed on mahiple pages
within a file or throughout several files.  In other words, two unrelated data units stored
within the same page cannot be accessed in different atomic actions exeuted at the same

time.

The Carncgic-Mellon Central File System project (CFS) is similar to Swaflow in that it is
a collection of various types of servers that cooperate in order to provide a single. coherent
system. Also. CFS makes the focation of the data distributed over the local and remote
nodes transparent to the clients, as docs Swallow. However. the types of servers are not the
same in CFS as those in Swallow, and furthermore, the capabilitics provided by cach system
as a whole are quite different. 'The most fundamental difference between CEFS and Swallow
lics in the amount of flexibility the client is given for structuring his data. (It is the same
fundamental dilference that exists between Swallow and both WFES and Juniper). Swallow
supports arbitrarily small objects and allows the client 1o access these objects in whatever
fashion suits the particular application.  CFS. on the other hand. forces the client to
structure and access his objects within the confines a file system. Thus, Swallow provides
separate protection for every object whereas CFS only provides protection for files a whole.
Furthermore, Swallow provides synchronization for accesses to any arbitrary set of objects
(lacking any file structure, within a single file, or within several files) whereas CHS only

provides synchronization for access to arbitvary sets of objects within asingle file.

The only similaritics that exist between the internal recovery for the data storage server in

WIS, Juniper, or CES, and that described in this thesis for the Swallow repository, are that
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all of these servers perform  their internal operations atomically and maintain - any
information that is deemed integral to the recovery process in atomic stable storage (except
for WES, which does not support any stable storage).  In all other respects, the recovery
mechanisms for the Swallow repository differ from those in the storage scrvers of WES,
Juniper and CES. Some noted differences are the following.  FFirst, the Swallow recovery
mechanismis that the repository’s internal recovery mechanisms must support are based on
mechansms developed by Reed [T 18] whereas the other system’s global recovery
mechanisms are based on other mechanisms [8. 5], Second. the Swallow repository is the
only storage server that uses optical disks as secondary storage.  thus. in Swallow
repositorics, optimizations in time efficiency are made at the expense ol space efficiency,
since physical storage is cheap.  Finally, the Swallow repository is the only server with
append only storage.  These, and other differences in the structure and function of the
storage servers and the systems as a whole. lead to different requirements for internal
recovery of the storage servers. thus. resulting in a unique sct of internal recovery

mechanisms for the Swallow repository.

1.2 Goals for Repository’s Recovery

The repository’s internal recovery mechanisms that are presented in this thesis were
designed with certain goals in mind. "The first and most important goal was to ensure that
the recovery mechanisms return the repository to a state in which its data (client objects,
commit records, and object headers) are both internally and externally consistent? from
both the clicnts as well as the Swallow components’ perspectives. This is such an important
goal because, as stated before, the gencral Swallow mechanisms and protocols are based on

the assumption that the repositorics function properly regardless of failures.

The sccond goal was to decrease the apparent mean time to repair by minimizing the

recovery that has to be done immediately after the repository crashes. Since clicnts store

Internal consistency refers to the consistency between all related data that s fully contained within the
repository. Fxternal consistency refers to all eelated data that is distributed over several repositories.
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information in the repositories that they require in order o carry on their regular activities,

it is important to minimize the delay that they eaperience due to a crash.  The immediate
recovery is minimized by taking advantage of the fact that most crashes affect only a small
portion of the repository’s data. Thus, the repository restarts as soon as it restores its global
state and recovers all client data while receiving and servicing external requests. In this way.
the repository allows the clients o access the unaffected data while it is repairing the

damaged data.

The final goal was to develop rccovery mechanisms that have a minimal effect on the
response time for satisfying individual requests, above that which is required to perform the
request, since the recovery mechan sms may be in effect while the repository is processing
requests.  The reponse time for individual requests is affected most significantly by
commuanications and disk transfer celays since the repository is a simple data storage server
and most of its work involves transferring the data between the disks and the client nodes.
Since the repository’s internal  recovery  mechanisms have  very  litde  need  for
communicating with other nodes, the main way in which they increase the response time is
by requiring additional disk accesses. Thus, the recovery mechanisms were designed with
the intention of minimizing the additional disk accesses that would affect the response time

for satisfying individual requests.

1.3 Outline of Thesis

In Chapter 2 we describe the general mechanisms and protocols that make Swallow a
reliable data storage system, and we specify the minimum requirements that individual
repositories must satisfy in order to support this reliability, In addition. we summarize the

various problems that may affect Swallow’s reliability when one ol its nodes crashes.

In Chapter 3 we discuss how the repository structures and accesses the data, since it is the
data that requires recovery after a crash.  In addition, we describe the organization of the

various types of storage in which this data is kept.

In Chapter 4 we present the mechanisms that the repository utilizes in order to recover its

16




data after a crash. For each (ype of data, we describe how a crash can damage it, and then,
how the repository implements its recovery. Furthermore, we justify why some data does

not require any recovery at all.

In Chapter 5 we evaluate the recovery mechanismis with respect to performance. We

analyze the costs of the recovery mechanisms in terms of their effect on the repository’s
response lime and then compare these effects with the effects that an alternate set of

recovery mechanisms (that we could have chosen to use) would have on the response time.

Finally. in Chapter 6 we look bac< at our original goals and review the strategics that are
used to Tulfill them. Then we point out several areas where these mechanisms may require
improvement and bricfly discuss several concepts that can be generalized and used in other

systems.
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Chapter Two

Overview of Swallow

Swallow is intended to be a very reliable storage system. Basically. itis a sct of protocols
that allow for proper management of data that may distributed over the local node and
several remote reposiorics.  There are various underlying mechanisms that are used in
order to implement these protocols.  ‘These mechanisms are basced on those described by
Recd [14.15]. In order for these mechanisms and protocols to ensure reliability of the
system as a whole. the repositorics themselves must function properly in the face of failures

(both their own, and those of other nodes).

This chapter discusses Swallow as it applics to the repositories. Section 2.1 describes the
mechanisms that are used to implement the aromic action protocol.  Herein, an atomic
action is defined as well as other terins such as object history. pseudotime and possibility. In
Section 2.2, descriptions of the atomic action protocol and several other protocols, on top of
which the atomic action protocol is built, are presented.  These protocols provide for
reliable interactions between repositories and brokers (the two entities that store and
manage the data for the Swallow clients). Next. Section 2.3 outlines the minimum
requircments that individual repositories must satisfy in order to support the reliability
characteristics that Swallow intends to guarantee. (These requirements provided the
guidelines for developing the repository’s recovery mechanisms).  Finally, Section 2.4 lists

the general types of problems that can occur when a Swallow node crashes,
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2.1 Swallow Mechanisms

In Swallow. the functional unit of client data is called an object.  I-urther, the
fundamental requests that a client can submit to Swallow (through a broker) to be

performed on an object are:

Create Object:  writes anew object into storage

Delete Object:  climinates an obj ¢t from storage

Reud Object: returns the current value of an object in storage

Modify Object:  assigns anew value to an object and writes it into storage

In addition. a client can submit (through the broker) a scries of these requests to be
performed as a single aromic action [8. 9. 14, 17] by bounding the series with Begin Atomic

Action and End Atomic Action requusts.

An atomic action is a sct of operations (requests) that must satisfy the following two
requirements:
1. failure atomicity requirement - the operations of a single atomic action should

cither be performed (o completion or not be performed at all (i.e., aborted if
completion is not possible).

2. concurrency atomicity requirement - the operations of single atomic action
should behave as if they are executed serially with respect to the operations of
other atomic actions even though atomic actions may be executed concurrently,

To satisfy the failure atomicity requirement. an atomic action is structured so that at some
point the atomic action is committed, which means that it is irrevocably required to finish.
In other words. if there is a failure before the commit point and not all of the component
requests have been satisfied then. upon recovery. the system's state must be backed up to
the state it had before any of the requests were fulfilled. On the other hand. if the failure
oceurs after the commit point, then any of the component requests that were not satisfied
before the failure occurred must be satisfied upon recovery. To satisfy the concurrency
requirements. it is arranged so that the intermediate state of the system during the exccution

of an atomic action (when only some but not all of the requests have been satisfied) is
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protected from any processes performing a different atomic action.

For example. consider the appointment scheduling system described in the previous
chapter.  The system would be implemented so that the scheduler would request that
Swallow read and update several people’s calendars as o single atomic action. Then, even if
cne or more of the repositories (containing the calendars o be moditied) crashes, the
calendars would either all reflecet the scheduled mecting (if the crash oceurs after the commit
point) or else nonc of them would reflect the meeting (if the crash occurs before the commit
point). Also, if one or more of the calendars does not have the requeste I time slot open,
then the appointment scheduler con explicitly abort the atomic action and none of the
calendars would be updated 1o reflect the mecting.  Finally, if several su th atomic aclions
were executed simultancously, and requested the same time slot in several people’s
calendars, then one of these atomic actions would appear to eaxccute first and thus, succeed

whereas the other would find that the requested stot was filled.

The remainder of this section summarizes the mechanisms developed by Reed [14, 15]

that are used in order to implement the atomic actions defined above,

Pseudotimes are numbers that are used to assign a total ordering of events in Swallow.
Pscudotimes do not directly correspond to real time. A global clock mechanism supplies a
unique. non-overlapping range of pseudotimes. or pseudotemporal environment, 1o cvery
atomic action. Each rcquest that accesses an object is assigned a pscudotime from the

pseudotemporal environment of the atomic action.

Objects are implemented in the form of object histories. An object history is a scquence
of versions. Tach version is a state that the object has assumed at some point in time. See
Figure 2-1. Each version of an object history is valid for a range of pseudotimes.  For

cxample, version Bin Figure 2-1, s valid from pscudotimes 5 to 10.




e e

Pseudotime

1 4 5 10 1 64 65 82

L_rj | | |

Figure 2-1: Example ol an Object History

A modify request creates a new version in the object history.  The pscudotime of the
modily request provides the start pseudotime. which is the lower bound for the version’s
range of validity. 1 a version already exists in the object history at the pscudotime specilied
in the modify request. then the modity request is denied. For examiple. a version could not
be created at pscudotime 8 in the object history illustrated in Figure 2-1 since version B
exists for that pscudotime,

A read request scfects the version that has the largest start pscudotinie less than the
pseudotime specified in the request.  Then, the upper bound of the version's validity is
eatended. if necessary. to include the pseudotime of the read. According to Reed [14, 15],
the upper bound of a version is the last pscudotime at which a request read the version.
This means that there can be pscudotimes in the middle of an object history for which no
versions exist.  For example. if a modify request wishes to create a version in the object
history shown in Figure 2-1 at pscudotime 90, then version E would be created with a fower
pscudotime of validity of 90 and no version would exist for pscudotimes 83 - 89, as shown in
Figure 2-2. To simplily matters within Swallow. it has been decided not to leave any holes
in an object history [18]. Therefore, when a new version is created at a specific pseudotime,
the previously current version's upper pscudotime of validity is extended to the pseudotime
at which the new version is being created.  Referring back to the previous example, the
upper pseudotime of validity for version 1D would be extended to 89, as shown in Figure 2-3

instead of leaving a hole, as in Figure 2-2,
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Figure 2-2: Creation of a New Version as Described by Reed
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Figure 2-3: Creation of a New Version in Swallow

An atomic action ensures that a specified sequence of read and modify (as well as create
and delcte) requests for one or more objects are performed as an indivisible unit. 1f any of
the requests are not successfully satisfied. then the atomic action is aborted. Abortions are
made possible by making the versions created by an atomic action tentative until the atomic
action is explicitly committed. These tentative versions are called tokens and are not
readable by other atomic actions. In other words, if some request within an atomic action
attempts to read a token created by another atomic action, then that request will be delayed
untif the atomic action that create it cither commits or aborts. Upon commiting, the tokens

made by an atomic action become versions.

All tokens created by a single atomic action are grouped into a set called a possibility.

When all of the component requests of an atomic action are satisfied, the atomic action
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commiity its possibility.  This committing converts all of the tokens into actual versions. f,
on the other hand. somie of the requests are denied, then the atomic action aborts its

possibility. which deletes the okens from the object history.

Possibilities are implemented using commit records that record the state of an atomic
action, Initally. the stute is unknown.  All 1okens in a possibility (or versions, once the
possibility is committed) contain a reference (pointer) to the commit record associated with
the possibility. Tokens are distinguished from verstons by the state of their commiit record.
When the state of the commit record is changed to commirted the token s become versions
and can be examined by other atonie actions. 1 the state of the commit record is changed
10 aborted then the ohens are dedeted. Further. commit records must fave timeouts
associated with theni so that if a failure occurs that causes the commit records o neither be
committed nor aborted (this could happen. for example. when a client node crashes), then
the tokens will not become permanent fixtures in object histories, blocking future real
operations on that object.  Possibilitics enable Swallow to ensure that if an atomic action
cannot be completed then the state of the data will appear as if none of the component

updates were done.

2.2 Swallow Protocols
In order for Swallow rcliably to satisfy the requests submitted by the clients. brokers and
repositorics must interact in an orderly fashion, The broker must interpret a client request

and. in turn, generate requests that can be understood and fulfilled by the repositories. The

brokers and repositorics communicate their needs to cach other by sending and receiving
messages, which contain cither requests or responses to some request.  Swallow provides |
standard protocols for sending and receiving these requests and responses under normal
circumstances. In addition, these Swallow protocols specify provisional actions that should

be taken if the status of communications between two nodes is disrupted by a crash of one

of these nodes.

The Swallow Message Protocol (or SMP) described in Section 2.2.1. provides for the




reliable transport of the messages through the network by detecting transmiission errors that

may occur. The request/response protocol, discussed in Section 2.2.2. provides a guarantee
to the requestor that its request has been reccived and fulfilled. "The atomic action protocol,
discussed in Scction 2.2.3 ensures global consistency of the data distributed over more than

one node as well as ensuring that atomic actions behave as if they are executed serially,

2.2.1 Swallow Message Protocol

Every Swallow message is sent through the network in the form of one: or more packels.
Fach packet has a sequence number that indicates which part of the message it contains so
that the complete message can be reconstructed at the receiving node. Swallow Message
Protocol. SMP, is a very simple protocol that specifies exactly how node A, for example.
must send the packets of a message 1o node B. The protocol is as follows:

1. A sends st packet of message

2. Bsends back a packet indicating that A can send X number of packets more

3. A sends X number of packets

4. B sends back a packet indicating that A can send Y number of packets more
S. A sends Y number of packets

6. etc.

This continues until the entire message is sent.  f either node does not hear from the
other one within a reasonable amount of time then it aborts the message and discards any
remaining packets.  Notice that this protocol is very simple for single packet messages
because no connection has to be established.  For multiple packet messages, though, it

allows the receiving node to exert some flow control so that its butfers don't overflow.

Currently, SMP is built on top of the User Datagram Protocol (UDP)Y [12]. UDP doesn't
resequence the packets of a single message at the receiving node nor dogs it prevent their

duplication.  Thercfore, SMP is responsible for reordering them and discarding all
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duplicates so that the receiving nodes do not have o perform these tasks. SMP does not
prevent out of sequence or duplicate messages. though. nor does it guarantee delivery of the
messages.  These problems are taken care of by the atomic action and request/response

protocols, respectively.

2.2.2 Request/Response Protocol

Since a requestor can never be certain that its request was received and/or satisfied unless
it reccives a confirming response [2°, there is an associated response for every request sent in
Swallow. The response cither confirms both the delivery and the fullittment of the request
or rejects the request. 11 the requestor does not reecive a response within a reasonable
amount of time then it can retransmit the original request or abort the transmission.  The
table in Figure 2-4 enumerates the various types of requests and associated responses that
can be sent and received by the repository.  The neat section describes what actions are

taken when these requests are received.

2.2.3 Atomic Action Protocol

The atomic action protocol specifics exactly how the brokers and repositories should
cooperate in order to carry out atomic actions for Swallow clients. The broker manages the
local data. monitors the atomic action as a whole and decides whether to commit or abort
the atomic action. On the other hand, the repository stores and manages the object histories
and commit records. That is, it reads and writes the actual data and carries out the final

phase of the atomic action, in which tokens are converted into versions or are deleted.

The objects updated by an atomic action may be entirely contained within a single
repository or distributed throughout an arbitrary number of them. In order to minimize the
number of external messages that have 1o be sent to the repositories. committing or aborting
a possibility, cach repository that contains tokens whose commit records reside in another
repository, maintains a single commit record representative for each commit record of an
atomic action. A commit record representative contains the state of the atomic action

(unknown, committed or aborted), as well as the references to any tokens (created by the
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Figure 2-4: Repository Requests and Responses

REQUESTS

RESPONSES

COMMENTS

1. Create-Object

Object-Created

Response contains uid
of object (OID)

2.Delete-Object

Object-Deleted or
Can't-Delete-Object

Can’t-Delete response indicates

a synchronization conflict

3. Read-Version

Versio y-Value

Response contzins version

valid as of given pseudotime

4. Create-Token

Token-Created or

Can't-Create-Token

Can't-Create-Tcken indicates

a synchroni ation contlict

5. Test-Commit-Record

State-Is: Commilted or
Aborted

Response contains state of

commit record

6. Abort-Commit-Record

State-Is: Committed or
Aborted

It commit record already
comitted then returns
State-Is: Committed

7 Commit-Commit-Record

State-{s: Commiitted or
Aborted

It comimit record alieady
aborted then returns
Stale-Is: Aborted

8. Add-Reterence

Reference-Added

Requestis sent to

commit-record-representatives

9. State-Is: Committed or
Aborted

Delete-Reference

Request sent to broadcast
final state of commit record.
Response confirms that final

state was encached in commit

tecord representative
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atomic action) that reside in the same repository in which the commit record representative
is located. Thus. the actual commit record need only maintain references to each repository
that contains tokens created by the atomic action rather than (o cach individual token, as
illustrated in Figure 2-5. Further, when a repository has 10 broadeast the final state of a
commit record so that the wokens can be converted into versions or deleted from their object
histories. it has to send only one message per repository regardless ol how many tokens cach
repository contains, Then, cach repository can act upon all tokens from that atomic action

that are referenced by the commit record representative.,

Sections 2.2.3.1 through 2.2.3.6 describe the protocol for cach type « f request that the

client may submit,

2.2.3.1 Begin Atomic Action

When a client begins an atomic action, the broker must send a message to some
repository, requesting the creation of a commit record. The repository creates it and returns
a response which contains the name of the commit record. Once the broker receives this
confirmation it can send to any repositories any sequence of create, read. modify or delete
object requests, depending upon the client’s needs.  All of these subsequent requests must
include the name of the commit record as well as a pseudotime, so that the repositories can
identify the atomic action of which the request is a part and can synchronize all concurrent

accesses to the same objects.

2.2.3.2 Create Object

When a client wishes to create an object. the broker sends a create-object-history request
to the repository. Upon receiving the request, the repository creates all of the internal
structures necded for the object history in storage. Included is a reference to the specified

commit record or its focal commit record rcprcscm:ativc.3 If ncither exists in the repository

3Boch the creation and deletion of ubjects are also requests that belong o a possibility, that is, if the atomic
action creating (deleting) the object fails. then the creation (deletion) is not done.
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Repository 1

aborted

commit
record

aborted aborted

o

commit record
representative

ccmmit record
representative

Repository 2 Repository 3

Figure 2-5: Representation of A Distributed Commit Record
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at that time. then the repository must create a representative with the correct reference to

the version and must send an external request to the remote repository that contains the
commit record. asking it o wdd a reference in the commit record to the commit record
representative. Once the local repository receives a response confirming that the reference
has been added then it must return a response 1o the broker, confirming the creation of the

object history.

2.2.3.3 Delete Object

When a client wishes to delete ar object. the broker sends a delete-object-history request
to the repository. When the repository receives the request. it checks whether or not any
versions exist for a pseudotime greater than or equal to the one specified in the request. 1f
any exist. then it returns a negative response indicating that the object cannot be deleted. If
none eaist. then the repository creates the final version of the object history that marks it as
being deleted. including a reference to the commit record (or representative) and returns a

response to the broker that confirms the object history’s deletion.

2.2.3.4 Modify Object

When a client wishes to modify an object. the broker generates a create-token request and
sends it to the repository. Upon receiving the request. the repository checks to see if a
version already exists at a pscudotime greater than or equal to the one specified in the
request. If one exists. then it returns a negative response indicating that the token can’t be
created at the given pscudotime. If none exists, then it crcates the new token, adds a
reference to the commit record or representative and returns a response to the broker,

confirming the token’s creation.

2.2.3.5 Read Object

When a client wishes to read an object, the broker sends a read-version request to the

repository,  Upon receiving the request, the repository must check whether or not the
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version referenced by the pseudotime in the request is a token. an aborted token, or a
committed version. If it is a committed version or a token that was created by the same
atomic action that sent the read request, then it simply returns that version or oken in the
confirmation. On the other hand, if the request is for a token that was created by a different
atomic action than the one that sent the request. then the repository must check the token's
commit record to see whether or not it has been committed. 1 so. then the repository must
commit the token, extend its validity time to the pscudotime specified in the read request
and return that version in the response to the broker. Otherwise, if the commit record has
been aborted then the repository must abort the token, extend the vaiidity time ol the
current version to the pscudotime specificd in the broker’s request. and finally, it must

return that version in the response to the broker.

2.2.3.6 End Atomic Action

If all of the component requests of the atomic action are confirmed then the broker
finishes the atomic action by sending a commit request to the repository in which the
commit record is stored. That repository then commits the commit rccord and returns a
positive response, marking the completion of the atomic action. On the other hand, if the
broker received any rejections to its requests then it may abort the atomic action by sending
an abort request to the repository, which must then abort the commit record and return a

response 1o the broker, confirming the abortion of the atomic action.

Once the final state of a commit record has been recorded. the repository storing the
commit record must broadcast this state to all of the repositories for which the commit
record has refcrences. When cach repository receives the state of an atomic action it must
cncache that state in the comumit record representative and return a response indicating that
the its reference can be deleted from the commit record's list of seferences. When the

commit record has no more references it can be deleted.?

4Nolc. that this description of the final phase of the stomic action (that is carried out by the repository) has
been simplified by ignoring the commit records of nested atomic actions. (See [Reed78])
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2.3 Reliability Re: -.ments for Individual Repositories

Now that the globar  _chanisms and protocols have been described, the two minimum
requirements that individual repositories must satisfy in order to ensure reliability of

Swallow, as a whole. can be defined as follows. in Sections 2.3.1 and 2.3.2,

2.3.1 Data Integrity

Since the repository stores the clients” objects as well as the commit records that are used
o synchronize access to those objuct, it must protect these objects and commit records
against any damage. loss. or inconsistency that may occur when it crashes.  n other words,

the repository must protect the integrity of all objects and commit records.

In protecting the integrity of the dlient data. the repository must do more than just ensure
that this data isn"t lost or damaged. It must also ensure that the objects and commit records
arc managed properly. This means that a crash should not alter the repository in any way
that would cause it to overlook the most current version or token of an object history or
create a version at a pseudotime for which a version already exists. It also means that a
crash should not cause a repository o release the value of a token outside the atomic action

in which the token was created.,

2.3.2 Atomicity of Requests

In addition to protecting the data integrity, a repository must satisfy all requests
atomically. That is. the multiple internal modifications that must be done as part of a single
request, must be done as an indivisible opcration, This internal atomicity supports the more
general atomicity guarantced by Swallow to its clients. In the same way that Swallow
guarantees not to leave client data in an inconsistent state. a repository must guarantee not

to leave its internal data in an inconsistent state.

For cxample. a version of a large object will span over more than one disk page. If the
repository crashes before it writes out all of the pages to the disk and these pages are not

written atomically, then the object history of which the incompiete version is a part will be
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invalid. Thus, upon restarting, the repository must ensure that the incomplete version is not

included in the object history.

As another example, a create-token request involves both recording the new version and
adding, to the associated commit record, a relerence to the new version.  If these two
internal tasks arc not performed atomically then the Swallow mechanisms for providing
clicnts with the ability to exccute a set of requests atomically will not woek properly, since
the repository will never know whether the token should be comverted to a version or

deleted from the object history.

2.4 Summary of Problems Caused by Failure of a Swallo ¥ Node

We have seen how Swallow ensures refiable storage of the data by providing the client
with the ability to exccute atomic actions and by insisting that its repositories satisfy several
requirements. Before getting into the details of the repository, let us briefly list the general

problems that might occur when a Swallow node crashes.

1. Global (or external) inconsistency of duta - The related client objects stored
throughout Swallow may not be current with respect to one another.  The
atomic action protocol ensures consistency with the support of the repositories,
which properly maintain and manage all commit records.

2. Internal inconsistency of duata within the repository - The objects. commit records
and other data supporting these objects and comimit records may not be
consistent with each other within the repository.  The repository’s internal
recovery mechanisms restore internal consistency of the data, as will be
described in this thesis.

3. Owr of sequence packets w/in a message - Communications delays may cause
packets of a message to arrive in a different order than which they were sent.
SMP resequences these packets.

-

. Retransmitted packets w/in a message - A node sending a requiest may retransmit
packets if it thinks that the original packels were lost. SMIP discards duplicate
packets.

5. Unconfirmed messages - A message may not be acknowedged it the veceiving
node crashes.  The combination of all three protocols and the repository’s
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internal recovery mechanisms ensure recovery of any damage caused by
unconfirmed messages. How they ensure this will be clarified in this thesis.

6. Incomplete messages - A repository may not receive all of the packets of a
message if it or the sending node crashes. An incomplete message does not get
confirmed so it is recovered as an unconfirmed message. This problem afTects
the repository since the data of a large object version is written into stable
storage as received. before the complete message is available.

1. Out of sequence messages - Due 1o the distribution of the nodes and real time
delays. requests may not be received in the same order that they are sent. The
atomic action protocol serializes all requests by using pseudotime: instead of
arrival order.

8. Retransmitted messages - Il a node does not receive a confirmation for a request,
it may retransmit the request. All requests that can be send to the repository are
repeatable; that is. the repository will make the requested modifications in
response to the same request only once (the repository can  recognize
retransmitted requests). Upon receiving a retransmitied request. the repository
simply confirms it and docs not repeat the modifications that are requested.
This thesis will demonstrate how the repository properly handles retransmitted
requcsts.

This thesis deals directly with problems 2, 5, 6 and 8. More discussion on the other

problems above will found in [14, 15, 16].




Chapter Three

Management of Data within the Repository

The repository's data can be classificd as follows: object data, commit record data,
pending messages data, and data that describes the repository’s global state.  In order to
understand how the repository reco sers this data alter a crash. it is first necessary to explain
the internal structure and management of these four classes of data as well as the

organization of the storage in which the data is maintained.

Sections 3.1 and 3.2 describe tie object and commit record data, which consist of
sequences of versions plus a header that contains o reference o the current version.  Next,
Section 3.3 discusses the miessitge data, which consists of sequences of packets.  Then,
Section 3.4 briefly describes the global state data. which is a record that describes the status

of the repository as a whole,

The remaining sections describe the various forms of sccondary storage that the
repository supports as well as their interaction with primary storage. Section 3 S gives an
overview of the organization of the storage in the repository and then Scctions 3.6, 3.7 and

3.8 deseribe Version Storage. State Storage, and Object Header Storage. respectively.

3.1 Objects

Within the repository. an object is represented by the versions of the object history plus
an object header, which contains a reference to the current version and other uscful

information about the object. Figure 3-1 illustrates the internal structure of an object,

Thus, in order to create a token (assuming that no token already exists) the repository
creates & version (as depicted in Figure 3-1) in storage, and then modifies the object header,

as follows. ‘The value of the ken reference is changed from nil o the newly created
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Figure 3-1: Structure of an Object Within the Repository

token's address in storage. the value of the commit record reference is changed to the
unique identificr of the token's commit record, and the end pscudotime value is changed to |

the pscudotime at which the token is created. Subsequently. if the token becomes a version,

the repository changes the references within the object header: the value of the current L
version reference is changed to the oken's address in storage, and then the value of the
token reference becomes nil.  Alternatively, if the token becomes aborted, then the
repository deletes it by simply changing the values of the token reference and commit
record reference in the object header to nil. Finally. in order to read a version of the object,

the repesitory obtains the location of the current version in storage from the object header.
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Since the objects are accessed using the object headers, the repository organizes the

object headers in the form of a hash table, called the object heuder table. This object header

table will be discussed in more detail in Section 3.8

3.2 Commit Records

Conceptually, a commit record consists of the state of the atomic action that it represents,
and a list of references to the tokens created by that atomic action. Within the repository, a
comntit record’s structure is similar to that of an object. A commit record {or commit record
representative) is structured as a threaded sequence of versions.  Furthermore, the
repository maintains a hash table, called the commit record table, whose entries contain the

state of the commit record and a reference to the current versions of the commit records.

Figure 3-2 depicts a commit record after the atomic action's final state has been decided.

-—
Commit Record
Table
token token token
1 for - for l——— for ¢—
unknown objectA objectB objectC aborted
state state

version version

Figure 3-2: Structure of a Commit Record within the Repository




When the commit record is first created, an initial version s created. This version contains

the unique identifier of the commit record. which is assigned by the repository. and the state
of the atomic action. which is UNKNOWN. In addition, an entry (that points to this
version) is created in the commit record table. Then. as okens are created within the atomic
action, they are not only threaded into the sequence of versions for their object. but are also
threaded into the sequence of versions of the commit record. As cach token is added to the
commit record’s Tist of versions. the corresponding commit record table entry is modified to
refer o that token. SimiLurdy. when a remote site adds a reference to the commit record. the
repository creates a representative version, which contains the unigque id's of the commit
record and the remote site. and then threads that version into the commit record’s sequence
of versions. Finally. when the atomic action is committed or aborted. the repository creates

anather commit record version that containg the commit record’s uid plus the final state.

In order to carry out the final phase of the atomic action. in which all tokens are
converted into versions or aborted form the object history, the repository modifies the
object headers corresponding to cach token in the commit record’s sequence of versions, to
reflect the final status of these tokens,  The repository starts with the most current token in
the list (which it accesses through the commit record table and then the first version which is
the final state version) and when it reaches the initial state version of the commit record, it

deletes the entry for that commit record from the commit record table.

3.3 Messages

The various types of messages that the repository can send and receive were listed in the
table in Figure 2-4 in Chapter 2. Of these. all are single packet messages with the exception
of create-token or version-value messages, which may contain large objects that cannot fit
into a single packet.  In these multiple packet messages, the sender places all of the

information in the first packet. except for the fragments of the actual value of the object that

Note that no object version will ever refer to a commit record that is created Tater than that object version.
This invariantis used o optinize recovery, as will be seen in Chapter 4,
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do not (it in this first packct. These fragments are the only data that will be contained in the '3

subsequent packets. Figure 3-3 depicts both a multiple packet create-token message.

SMP Header
I
Messagell) ) MessageiD MessagelD MessagelD }
Packeti — Packet? Packet3 Packetd
0ID ]
ComReclD
]
Pseudotlime VALUE VALUE VALUE ; )
VALUE ' ,
— -3
f
1
143
g

Swallow Request

Figure 3-3: Structure of a Create-Token Message

Thus, when the repository receives a multiple packet create-token message. it does not
have to wait for all of the packets to arrive before it can start writing the fragments of the
object onto the disk. Instead, it can write the fragment contained within cach packet as the

packet arrives, and then can discard the packet since it has been processed.

3.4 Global! State
There is a small amount of data that describes the repository’s global state. Most of this
data consists of the logical mappings of the various types of storage into the physical

devices. The remaining data consists of valucs such as the last unique identifier that the |

repository assigned to an object or commit record. and data that describes certain recovery

events. The nature of this data will become clearer by the end of the chapter,




3.5 Overview of Storage Organization

The repository supports several kKinds of storage. Two are kinds of atomic stable storage,
one is a kind of carcful storage. and the remainder of the repository’s storage is volatile. Sce

Figure 3-4.

Stable Careful Volatile
VS X
State X
Cache X
OHS X
Temporary l X
Page Buffer X

Figure 3-4: Storage Classification

Atonic stable storage, (henceforth referred to as stable storage). is secondary storage that
we assume will never lose a value stored there. In practice. this means that stable storage
contains multiple copics of these values at all times. These copies are organized so that it is
unlikely that any one failure (such as a disk head crash) will destroy all copics of the same
value.  Furthermore. the repository’s stable storage is atomic because a wrile 1o stable
storage fails in only two ways - having made no change or having completed correctly. In
general, the read and write operations on stable storage are time consuming sincc the
multiple copics must be accessed and checked 1o be correct. The two types of stable storage
in the repository arc characterized as append-only and reusable stable storage. Append-
only stable storage is like a tape since data is always written at the end. Also, no data is ¢ver
overwritten in append-only stable storage. On the other hand, in rcusable stable storage,

modifications made to the same data are rewritten in place.

Careful storage. is simply sccondary storage in which there is only a single copy for cach

value stored there (not multiple copies as in stable storage). Thus, carcful storage has faster




data access time than stable storage. Generally, the data in careful storage survives crashes,
but it is not guaranteed 1o survive any crashes (as is guaranteed in stable storage). However,
in the repository, the loss of data in carcful storage does not cause failure as long as this loss

can be detected, since the data can be recovered from the data in stable storage.

Finally. volatile storage is primary storage that is used as a temporary cache for the long
term information stored in stable and carctul storage.  Volatile storage has a much faster
access time than either type of secondary storage, but all data that it contains is lost when

the repository crashes.

Thus, all data that is needed o represent the externally visible state of the repository is
stored in stable storage so that if the repository crashes. none of this data will be lost. The
versions of the objects and commit records are kept in append-only stable storage, calied
Version Storage and the global state data is kept in reusable stable storage. called State

Storage.

The rest of the repository’s data, which is redundant of information in stable storage or
which does not have to be recovered at all after a crash. is kept in carcful or volatile storage.
Since the object header table would be too time consuming to recover in its entirety, it is
kept in carcful storage, called Object Header Storage. Then, if the repository crashes, only a
small part of the table, if any, is lost. Thus, carcful storage is used to improve the
repository’s performance by climinating cxcessive accesses to stable storage while reducing
the cost of recovery that would be required if the data were maintained in volatile storage.
The commit record table, though, is smaller and less dense than the object header table, so it
can be reconstructed much more easily after a crash. Thercfore, it is only maintained in
volatile storage. Finally, the messages that are pending when the repository crashes do not
have to be recovered at all. since they are processed atomically and the protocols allow for

incomplete mesages. Thus, message data is also kept only in volatile storage.

The remaining scctions describe in detail the logical mappings of the repository's
sccondary storage (Version Storage. State Storage and Object Header Storage) into the

physical devices as well as the methods used to encache in volatile storage the data that is
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kept in secondary storage,

3.6 Version Storage
The main form of stable storage that the repository supports is Version Storage (VS)
which contains the versions of objects and commit records as well as two other ty pes of data,

called checkpoint entrics and epoch boundaries.  (These checkpoint entries and epoch

boundaries contain data that is used for recovery and will be described in Chapter 4).
Abstractly, VS can be viewed as an infinite. append-only tape. but physica'ly. it consists of 2

sets of write-once optical disks.® Each setis a backup for the other one in case some of the

data is destroyed. '

Since VS is append-only storage. it is always increasing in size. Thus. only a [raction of it

can be kept on line. VS is managed in such a way that the current versions of objects and

S

commit records remain in the portion of VS that is online, This online VS consists of the

T

two or more most current disks of VS, The most current disk is called the high space and
the oldest is called the Jow spuce. Online VS is managed as a circular buffer [SVOB80), as
follows. When the high space is filled up. the current low space disk goes offline and a fresh
disk becomes the new high space. Furthermore, whenever a version is accessed in the low
space. it is copied into the high space. Thus, when the current low space disk goes offline,

the version will still remain online.

All data is stored in VS in units called version images. There are § different types of
version images: simple. root. fragment, boundary and checkpoint version images. A version
image consists of size, type and data fields, and resides wholly within one page of VS. A ,
version of an object or commit record that is small enough to fit on a single disk page is
stored as a simple version image, as illustrated in Figure 3-5. However, a version that is &
farger than a single disk page needs a superstructure that points to all of the pieces of the

version that are interspersed throughout several pages. Therefore a large version is stored as

6|niliully. magnetic disks will be used to simulate optical disk. They will be used in a writc-once manner,
however.
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a structure consisting of some number of fragment version images. which make up the

version, plus a root version image, which has pointers to all of the fragments, as illustrated
in Figure 3-5. A large version is written to the disk atomically by writing the root version
image after all fragment version images are written and then. only linking the root into the
appropriate scquence of versions.  Thus, fragments of incomplete version images are
ignored since they arc unreachable. Fanally, boundary and checkpoint version images look
just like simple version images. cxcept for the data ficld, which consists of an epoch

boundary or checkpoint entry, respectively.

Several version images may be packed onto a VS page. which is the unit of physical reads
and writes. In order to pack these version images as efficiently as possible. several unwritten
VS pages are encached in a page baffer in volatile storage (recall that the disks are write-
once only). Since VS is stable storage. it docs not return the VS address of a version image
(i.e.. confirm the write to the repository process that initiated the write) until both copies of
the VS page (on which the verison image resides) are written correctly from the buffer onto

the two disks.

An unwritten VS page in the buffer is written out to the disks when cither of the

following three conditions holds true:

1. The page is full - Once a page is full, there is no need to wait any longer to write
it out since it is only left unwritten in order to pack version images in it as tightly
as possible,

2. The page has been in the buffer for some extended period of time since the first
version image was added to it - Since a repository process cannol confirm
external requests (that modify commit records or objects) until it receives a
confirmation from VS and in turn, VS cannot confirm the write until the VS
page is actually written on the disks. partially full pages are written out to the
disks after a predefincd time-out period. In this way. when the repository is not
being heavily utilized. external requests will not remain unconfirmed for too
long.
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Another unwritten VS page with a higher VS address is full and must be written out to
the disks - This ensures that no version image is written at a lower VS address
than any other version image o which it refers, and thus, preserves the abstract
view of VS as an append-only tape.  -or example, in order for a process to
create a version image. vi2. with a reference in it to another version image, vil, it
has to know the VS address of vil. Since the process gets that VS address when
VS contirms that vil has been written, then when the process requests that vi2
be written, all pages with VS addresses less than or equal to that of vil will
already have been written on the disk and therefore vi2 cannot be written in any
of them (VS disk pages are write once).

In order to actually write a VS page from the buffer, a copy is wri ten to the same
addressed page on cach of two disks. After cach copy is written out, itis r2ad back 1o make
sure that the correct data was written. Then, if o copy was not written correctly, it must be
rewritten (and rercad). However, it cannot be rewritten on the same disk page because the
disk is write-once. Theretore, il cither of the copics is written incorrectly, then both copics

must be rewritten on another pair of pages.

In addition to maintaining several unwritten pages in the buffer, several of the most
recently written or rcad VS pages are also encached in this page buffer so that if these
encached pages are read again within a short time period, the disks will not have to be
accessed. However, il a process wishes to read a version image on a page that is not in the
bufler. then the disks have to be accessed. as follows.  First, onc copy is read from the disk
and verified 1o be correct, using a checksum.  1f that copy is correct, then the second copy
does not have to be examined. On the other hand, if that copy is incorrect then it must be

recovered from the sccond copy.

In.order to implement this recovery, both copics of the page ntust be rewritten on a new
set of identical disk pages. as is done when the write operation fails, However, all references
to the version images on a page that has been recovered in this way would become invalid.
Thus, in order to preserve the validity of these references. the repository maintaing a map
from the bad pages to their replacement pages. Then. when a process attempts (o aceess a

version image on a bad page, VS will find the recovered copies of that page, using this map.

Once a page is deternvined to be bad, it should never be mistaken for a good page. Thus,
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the page must be made detectably bad forever. If VS is implemented using optical disks, as
originally planned. then pages can be made bad permanently by writing on them a second
time. obliterating any marginal data.  However, if another type of disk is used, then some
other method. such as Keeping a table of bad pages. would have to be devised in order to

make pages detectably bad lorever.

3.7 State Storage

The second form of stable storaze that the repository supports is called State Storage,

which contains the data that desceribes the repository’s plobal state. Physically . state storage

consists of a small amount of reusal Te magnetic disk storage. 1t is stable due to the fact that
the global state data is duplicatea at separate ocations on disk that have independent
probabilities of decaying. In other words. it is not probable that a single crash can destroy

both copices of the data.”

The repository supports State Storage in addition to VS for the combined reasons that the
location of the global state cannot change and VS is writc-once only. I the global state was
kept in VS, then every time it was modified it would be written into a new location in VS.
I'his would mean that when the repository was booting itself after a crash, it would not
know exactly where to find this data because its location could not be hardwired into the

bootstrapping procedure. By supporting reusable stable storage, this problem is avoided.

In order to write a State Storage page., cach of the copies is written and then read back (to
verify that the copy was written correctly).  However, since writing a State Storage page
overwrites older copies of the global state, the copies must be written and read back
sequentially instead of in parallel. as in VS, Then, if the repository crashes in the midst of
writing one copy, there will still be another valid copy from which o recover the data that is
contained on that State Storage page.  Furthermore, the copies are always written in the

same order so that il a failure occurs in between writing the two copics (leaving both copies

In order to be even more reliable, the actual implementation of State Storage may keep 3 copies of all data.
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valid but different), the repository will know which copy is current.

In order to read a State Storage page., both copics on the disk must be verified 1o be
correct and identical to one another before allowing any repository processes 1o examine the
page. If cither one is bad, then the bad copy is recovered from the good copy. Further, if
both copies arc valid but not identical, then the second copy is recovered from the first
copy, which is the current copy. 1t is not sufficient to verify the correctness of only one
copy. when reading a State Storage page from the disk. because the repository may have
previously crashed before writing tise second copy. If the sccond copy is not subscquently
updated when read, then another w ite of that State Storage page could it and damage the
first copy. leaving no valid copy from which to recover. (The second copy would be 100 far
out of date to be of any use). Thus, when reading a State Storage page, 11 is necessary o

compare both copics and recover one, if necessary.

Since the global state data is read fairly frequently, it is encached in volatile storage to
climinate the time consuming accesses 10 State Storvage. Thus. the only time the disk has to
be accessed in order to read the global state is when the repository first comics into existence,
and then, whenever the repository restarts after a crash. On the other hand. since most of
the State Storage data changes fairly infrequently. if at all, it is kept current in State Storage
(that is, every time it is updated in the cache it is also written onto the disk). There are two
values, though, that change too often to be practically kept up to date in State Storage.
Thus, they are kept current in the cache. but are only periodically updated in State Storage.
These wo values are the VS write pointer, which indicates the current end of VS and the
value of the last unique identifier that the repository assigned to an object or comniit record.
The write pointer is only updated in State Storage cvery N® time its value changes, where N
is a predefined constant.  Similarly, the value of the last uid (unique identificr) assigned is
only updated in Statc Storage every X" time its value changes, where X is another

predelined constant. The recovery of these two values after a crasht will be described in the

next chapter.
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3.8 Object Header Storage

Object Header Storage. or OHS, is reusable careful storage in which the object header
table is maintained. ‘The repository keeps this table of object headers so that it does not
have to scan sequentially through VS in order to find the versions of objects.  An object .
header provides direct mappings to the current version and token as well as a reference to
the token’s contmit record.
Fven though object headers are not required in order for the repository to function

correctly (the repository can always resort 1o a sequential scarch thro igh VS) they are

necessary in order for the repository to function ¢fficiently. Therclore. the object header

table must be organized so that the object headers are efficiently accessible. The two main
alternatives for the table structure were a B-tree or a hash table. A non-coalesced chain hash

table similar to the one described in [7] was selected.

This type of hash table was chosen for its simplicity of structure and ease of recovery, as
well as for its eMicient search. insertion and deletion algorithms. The average search time of
the hash table is independent of the size of the table (providing that the table does not get
o full) while the average scarch time of a B-tree is directly proportional to the logarithm of
the table size [7. 4], Also. the fundamental unit of a linked list in the hash table (a bucket)

contains only a single object header. whercas that of a linked list in the B-tree (a node)

usually contains some number greater than one. ‘Therefore, there is potential for losing
more information in a B-tree than in a hash table if a link is broken (e.g., when one of the
fundamental units gets lost or becomes obsolete after a crash).  Finally, it is easier to
characterize the problems that can arise in the hash table as a result of a crash than in a B-
tree. Therefore, the hash table was more casily adaptable to recovering itsclf in the

background as the repository fullills requests. ’ !

The basic structure of the hash table is as follows. 'The OHS pages are divided into fixed
size units, cach of which can accommodate a single object header. Fach of these units is a
bucket in the hash table and is uniquely identiticd by its OHS address.  Further, only three
of the object header ficlds are relevant o the hash table: the OID, the delete flag and the

hash table link. The OID is used as a key in the hash table. Thus, a mathematical function
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is used to map or hash every OID to some bucket in the table. The bucket to which an
object header hashes will be referred to as its home bucket. Next. the delete flag is used to
indicate whether the object header is valid or has been deleted.  Finally, the hash able link
is used W create linked lists of buckets.  The remaining fiekls of the object header are

ignored by the hash table algorithms.

Even though only one object header can oceupy a bucket at any given time. there exists
more than one object hicader (or more specifically, O of an object header) that hashes to
cach bucketin the table. Theretore, once a bucket is occupicd, all other object headers that
are added 0 the table, whose horie bucket is that bucket. are placed arbitrarily in other
empity buckets and linked lugclhcr.x The first bucket in cach linked list is the one 1o which
all of the object headers in the other buckets hash, i.c.. it is their home bucket. The linked

lists will be referred to as chains.

Figure 3-6 illustrates a page in the hash table to be used in examples throughout this
thesis. All figures thot depict pages of the hash table will be of the same form but will show
only the contents of the pages and buckets that are relevant o the particular example.
There arc four pages, A through . in the hash table, cach containing five buckets. The
object headers have OID's of the form ohN, where N is the OID (an integer). Chains are
identified by the address of the home bucket. Also, the two states of the delete Mag will be
represented by the letters V (valid) and D (deleted). The remaining ficlds within the actual
object header are not relevant to the discussion about the organization of OHS, so they will
simply be represented in cach bucket as an X mark. Finally, the hash function selected for

the examples in this thesis is O1D modulo 20.

The three hash table operations are scarch, inscrtion, and deletion. The scarch operation
finds the specified object header in the object header table. The insertion operation is used
for adding newly created object headers o the object header table. Finally, the deletion

operation simply climinates an object header from the object header table.

8'lhc chonee of buckets is not completely abitrary. The algorithm for finding a fice hucket first looks for a
bucket on the same page as the home bucket sinee in this way, most linked ists will be constracted so that they
are tully contamed within i page and thus, the amount of paging that must be done will be minimized.
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Figure 3-6: A Representative Hash Table Page

The search algorithm is as follows:
1. Hash the given object header to the home bucket, X.

2. If bucket X is empty or contains an object header whose home bucket is not
bucket X (i.e.. hashes to another bucket), then terminate unsuccesstully.
Otherwise continue scarching down chain X until the requested object header is
found or the end of the chain is reached.

3. If the end of the chain is reached then terminate unsuccessfully,  Otherwise,
return the object header that was found.




An example:

Suppose pages C and D of the hash table are as shown in Figure 3-7 and we wish to find
oh37. Oh37 hashes to bucket 17, so we first check 1o sec if bucket 17 contains oh37. Since it
does not, we hash the object header in bucket 17 to sce whether bucket 17 is the home
bucket for that object header. Since it is, we follow the links through successive buckets in

chain 17 and find oh37 in bucket 15.

10 15| oh37 v |0~
_41
" 16
12| oh42 D N 17 ] ohti7 Vv &b
13 18] oh57 D |®]
141 oh82 v 0‘1 19
Page C Page D

Figure 3-7: Initial State of Pages C and D




The insertion algorithm is as follows:

1. Perform the scarch operation on the object header.,

2. 1f the search terminates successfully. finding an older version of the object
header in bucket B. then ins2rt the updated version of the object header in B
and terminate. Otherwise. hash the object header 1o the home bucket, X.

3. Do one of the following:

a. 1 bucket N is empty, or contains a deleted object header whose home
bucket is bucket N, the simply insert the new object header into bucket
X.

b. If bucket X contains a valid object header whose home bucket is bucket X,
then check for another bucket on ¢hain N that contains a deleted object
header. If one exists then insert the object header there, Otherwise, find
another available bucket, Y. insert the object header in it and add it w the
end of chain X.

¢. If bucket X contains an object header whose home bucket is not bucket X,

then bucket N must be part of another chain. beginning with bucket

Z. Thus, it is necessary o move the object header presently in bucket X to

some other bucket, f there is a bucket. D, on chain 7 that contains a

deleted object header, then move the object header in bucket X to bucket

. Otherwise move the object header in bucket X o a free bucket. F, and

reroute chain 7 through bucket F, Once the old object header has been

removed from bucket X, inscrt the new object header there,

The following is an example of three successive insertions that are executed on the hash
table shown in Figure 3-7. Each insertion demonstrates one of the branches that can be

taken in Step 3 of the insertion algorithm,

Supposc we wish to insert ohl2 into the hash table. We perform the scarch through
chain12 in page C (Figure 3-7) and it terminates unsuccessfully. Neat we check the object
header (0h42) in bucket 12 and discover that bucket 12 is its home bucket but it is marked

deleted.  ‘Thercfore we execute step 3a of the insert algorithm by discarding oh42 and

insciting oh12 in its place in bucket 12, See Figure 3-8 for the state of page C alter this '

insertion is done.
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Page C

Figure 3-8: Page C After Ohl2 is Inserted

Now. suppose we wish to insert oh77 into the hash table. We cannot place it in bucket 17
in page D (Figure 3-7) because it is the home bucket for the object header that it contains
and that object header is still valid. Therefore we look for another bucket alrcady on the
chain that contains a delcted object header. Bucket 18 satisfics these requirements so we
execute step 3b of the insertion algorithm and insert oh77 in bucket 18 in place of ohS7.

Figure 3-9 shows what page D of the hash table looks like alter this inscrtion is done,

Finally, supppose we wish 10 inscrt oh34 into the hash table. We have to exeeute step 3c
of the insertion algorithm because bucket 14 in page C (Figure 3-8) is not the home bucket
for the object header that it contains, oh82.  Therefore, we move oh82 to another free
bucket, bucket 10, then reroute ¢chain 12 through bucket 10 and finally, insert oh34 into
bucket 14, Sce Figure 3-10 for the final state of page C after this insertion is done.

The deletion algorithm is as follows:
L. Perform the scarch operation on the object header,

2. 1f the search terminates unsuccessfully (i.e. the object header is not found) then
terminate unsuccessfully. Otherwise change the state of the bucket in which the
object header was found to deleted.
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Figure 3-9:
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An example (using the hashtable shown in Figure 3-9):

Suppose we want to delete oh37. We find it in bucket 15 and simply mark it deleted as

shown in Figure 3-11.

151 oh3d7 D .-"1
16

-—._1L

17 | oh117 \ .TP
18| on77 AL &
19

Page D

Figure 3-11: Page D After Oh37 is Deleted

When an object header is deleted it is not removed from the bucket in which it resides
nor is the bucket removed from the chain of which it is a part. These actions are delayed
until some time in the future when another object header has to be inserted and an empty
bucket is needed. Then, if the deleted bucket is part of the chain to which the object header
to be inserted belongs, the object header can be inserted into the bucket in place of the
deleted object header without making any changes (o the chain structure. (This was the case
in the first two examples of insertions). This climinates the work involved in restructuring
the chain. for both the deletion and insertion algorithms. At worst, i a bucket is nceded to

hold another object header that does not belong in the chain of which the bucket is a part,

then the restructuring has to be done anyhow.

The deletion algorithm delays the actual removal of the object header from object header

table in order o alieviate the following problem.  Since pseudotimes do not directly

correspond 1o real time, read requests for an object may arrive after that object has been

deleted with respect to real time but before the object has been deleted with respect to
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pseudotime. Thus, it is hoped that in most cases where this situation arises. by delaying the

actual removal of the object header from OHS, the object header will still be available so
that the repository does not have to scan scquentially through VS in order to find the

appropriate version.

In OHIS, like in VS, the fundamental unit of read and writc is actually a page.  Also,
several of the most recently read and written OHS pages are encached in the page buffer in
volatile storage.  However, unlike in VS, an object header does not have to be written from
the page buffer to the disk before a wepository process can confirm an exter nal request. since

data may get damaged even ifit has oeen written on the disk (OHS is not stable storage).

Furthermore, the object header table may not be modified atomically, s nce the insertion
algorithm sometimes moditics object headers on several pages. which are aot written (o the
disk in any related order nor all at once. The object header table is not modified atomically
because many independent processes may be concurrently inserting object headers on the
pages in the buffer and thus, there may be no instant in time (except for when the repository
is idle) when all of the object headers on a page or sct of pages are consistent and hence,
atomically writeable.

Therefore, a page that has been modified in the buffer is actually written out from the
buffer to the disk when one of the following conditions holds true:

1. The page is the least-recently-used page in the buffer and another page has to be

brought into the buffer - The OHS page buffer replacement scheme is a Least-
Recently-Used scheme,

2. An extended period of time has passed since the page was modified in the buffer -
This prevents pages that are frequently being accessed from getting (oo obsolete
on the disk.

3. The repository has no more outstanding requests - At this time, all pages in the
buffer that haven't been written to the disk since they were last modified, are
written. This brings OHS 10 a consistent state,

However, it would be very rare for the repository to crash in the midst of a non-atomic

insertion operation, (or the following reasons. [First, the inscrtion algorithm is only executed

when object headers are initially created.  Whenever they are modified. the repository
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process requesting the modification would have obtained the OHS address of the object

header when it read that object header. Thus, unless the object header was moved, the
insertion operation wouldn't have to be exccuted since the object header could be modified
directly, using the OHS address. Second. most chains are completely contained within a
single page, so even if the insertion algorithms modifies several buckets on the chain, the

object header table will still be updated atomically (each page is written atomically).

Thus. in the few cases where a crash causes the object header table to be updated non-
atomically, the repository’s recovery mechanisms will restore consistency within the object

header table. This, and all other recovery will be described in the neat chepter.
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Chapter Four

Recovery of the Repository

In order to recover from a crash, the repository must restore its global state, as well as the
state of the objects and commit records. to a state that is current with respect to that of
Swallow as a whole. On the other hand. the repository does not have to recover the !

messages that were lelt pending when it crashed, for reasons that will be described in this 4

i

chapter. ;

Since some of the global state da.a consists of recovery information that has not yet been

described, the discussion of the global state data’s recovery will be deferred until Section

*

4.3, at which point the recovery information will have been described. But first. Sections 4.1

and 4.2, respectively, discuss how the internal structure of the objects can be damaged by a

PETRY W

crash and also describe the individual recovery mechanisms that are used to implement

their recovery.  Then, Scetion 4.3, presents the recovery manager. which coordinates all

b e et

recovery activities. This section explains how the global state data is recovered as well as
how the various recovery mechanisms are integrated into a coherent recovery process that

interfaces with the processes that are satisfying external requests, concurrently.  Finally,

Section 4.4 eaplains why itis unnecessary to recover the pending messages.

4.1 Recovery of Objects b

Duc to the fact that VS is stable storage, and thus, maintains all of its data redundantly,

-

all object versions that are confirmed to have been written there will be found there after a
crash.  Furthermore, all incomplete versions are ignored. Thus VS, in itself, contains the
current state of all objects. Were it not for a desire to improve performance. claborate v
rccovery mechantsms would not have been needed.  However, to find the most current 1

version of an object in VS requires a lincar scarch, which would perform very poorly. To {
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overcome this performance problem, the repository accesses the objects’ versions in VS

through the object header table, which is maintained in OHS.  Since OHS is only carcful
storage, a crash may damage the structure and/or contents of the object header table. Thus,
it is this object header table that must be recovered in order for the objects to be consistent

with the general state of Swallow.?

The various types of structural damage to which OHS is vulnerable are merged. cyclic
and incomplete chains (Section 4.1.1). The repository uses a modificd set of hash table
algorithms (Section 4.1.2) in order 1 detect and correct these damaged chains. On the other
hand. the contents of the object heider table, that is the actual object headers, get damaged
by becoming lost or obsolete (Section 4.1.3). Most of the information comained in these lost
and obsolete object headers can be recovered from the data in VS, as deseribed in Section
4.14. Furthcrimore, the repositery uses two mechanisms, recovery epochs and checkpoint
epochs (Scctions 4.1.5 and 4.1.6, respectively). in order to facilitate the recovery of these lost

and obsolete object headers.

4.1.1 Merged and Cyclic Hash Table Chains

When an object header is inseried into the object header table, several buckets may be
modifted. If thesc buckets arc not all located on the same disk page then all of these
modifications may not be atomic, since the OHS page buffer management scheme does not
write the separate pages out to the disk in any particular order nor all at once. If it was
possible to writc out the pages so that cach bucket is written out before any other buckets
closer to the end of the chain then all problems except tor incomplete chains would go
away. However, since many processes may be concurrently accessing buckets on different
chains but on the same OHS pages. it may not be possible to preserve any such ovder.

Furthermore, since the cost of the OHS opcrations (and thus, the repository’s response

antc that implementing OHS as atomic stable storage would not really alleviate this problem. The lost

object header problem would go away but there would stil be a problem of inconsisteney between OHS and VS,
since every object history operation nvoives touching both.  The cost of this aliernative s discussed in Chapter

5.
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time) would increase if the concurrency of accesses to buckets on a single OHS page was
climinated. the OHS page buffer does not ensare atomicity of insertions of object headers
into OHS. This non-atomic insertion of ohject headers is manifested after a crash in one of
three types of malformed hash table chains: merged. cyclic, or incomplete.

AMerged Chuins:

; A chain is considuered to be mierged when its fast bucket contains a tink to a bucket thatis
part of another chain. In Figuie 4-1. chain [ is merged with chain S, One way in which

chain § could have become merged with chain 5 s as follows.

Assume that the initial state of pages, in both the buffer and on the «disk. is as illustrated
in Figure 4-2 and that oh3 is o be inserted. {0 order to insert 0hS, 0h191 would have 1o be
moved o another empty bucket and chainl would have to be rerouted through the new
bucket. Figure 4-3 show how pages A and B would appear in the page buffer after the
insert was done. However, it the repository crashed before page A was written on the disk
but after page B was writien. then chain 1 would merge with chain § as originally illustrated

in Figure 4-1.

Since merged chains are longer than necessary. they tend to reduce the efficiency of the

hash wble algorithms.  Furthermore, if a merged chain is not corrected before subsequent ;
operations modify it, then it may hecome merged with an additional chain cach time the ‘ %
repository crashes. forming a single long chain,  Thus, when merged chains are not ; ]

corrected. the original benefit of a hash table is lost, since the efficiency of the algorithms is

reduced.

In addition, the longer the repository waits, the more difficult it becomes to fix a merged |

chain. 1t is casy 10 fix a chain when it initially becomes merged because all of the buckets

-

from one chain are located at one end of the merged chain and those from the other chain
are located at the other end. Thus. only one link has to be modified in order to correct the
sitwation.  However, as additional insertions and deletions are eaccuted on the merged
chain, the buckets of the two component chains become interleaved, as shown in Figure 4-4,
Thus. it would be necessary to break several links and then relink the buckets properly in i

order te reconstruct two separate chains,
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Cyclic Chains:

A cyclic chain contains a bucket whose link points back to another bucket (also in that |

chain) that is closer to the beginning of that chain, as illustrated in Figure 4-5. Cyclic chains

are undesirable because they prevent the hash table algorithms from terminating. o other
f words, these algorithms becomie infinite loops when executing on cyclic chains because they

never encounter a null chain link, which signals that the end of the chain has been reached.
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Figure 4-5; A Cyclic Chain

For exaniple, assumc that the state of pages A and B in the buffer and in OHS is as shown

in Figure 4-6, and that the following sequence of operations is executed.
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Figure 4-6: Pages A and B Belore Cycle was Created

1. Ohl is deleted from chainl.
2. 0h101 is deleted from chainl,
30065 s inserted in chain 5. (In doing so. a collision oceurs in bucketS.

Normalhy. oh101 would have to be moved o another bucket and chain 1
reronted through 1. but since ohl was deleted. this is not necessary.  Thus,
oh 107 is simphy remosed from the table, ohod s inserted in buchet S and chain 1
i moditied so thatit no donger includes bucket )

1 OKI0S ds inserted inochain S0 (Aeaing & collision occurs but this time with an
object header that belones on the chaine Therelore o103 has 10 be inserted
into another free buchet. Assaming that bucket Vs the bucket that is found to
be tree [oh b s deteted and theretore can be removed from the bucket] oh 105 is
then serted i backet ¥ owilnch s then added 1o chain §.)

Figures 4708 49 and F 10 show the pages as they would appear in the bufter after

cach shep is exceuted. Nowifa crash oceurs at a point when page A (on the disk) s stll in ) E
the same state as bofore any of these operations were evectited yet page B has been written
out 1o the disk i the final state, then chain T becomes merged with chain S and the

resutong Cham contains acycle, as previously shown in Figure 4-5,

When aosale woinitially created inoa chain, it is always accompanicd by the merging of
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two chains, as demonstrated in the previous example, Therefore it would seem that in order
o detect a cyclic chain, one would simply ¢heck for a merged chain. However, this
detection procedure would not catch all cyclic chains if they were not always corrected
before allowing subscquent operations to modify them. For example, suppose that oh27 is
1o be inserted in the cylic chain itlustrated in Figure 4-11 Since bucket 7 is not oh81°s home
bucket but is oh27°s home bucket, oh§1 must be removed from bucket 7 and oh27 must be
inserted in oh81's place. Furthermore, if possible, oh81 should be moved o anothier bucket
on chain 1 that contains a deleted object header. Sinee bucket 12 is on chain 1 and contains
a deleted object header. oh81 s inszited there after the deleted oh72 s removed.  Finally,
oh27 is inserted in bucket 7 and chain 1is rerouted around it The final state of pages A, B.
and C is shown in Figure 4-12. Sitce there is no merged chain anymore. the ¢ycle would
not be detected by the simple detection procedure that was proposed above. Thus, as is the
case with merged chains, it is advantageous to correct the damage in cyclic ¢hains before
allowing further operations to modify it.

Incomplete Chains:

An incomplete chain is one in which the tail end of the chain is unaccessible. that is, the
last reachable bucket in the chain contains a pointer to an emipty bucket or a bucket on a
damaged page.m For examplc, one way in which an incomplete chain could be created is as
follows. Assume that the initial state of the pages is as shown in Figure 4-13 and that oh81 is
to be inserted. In order to insert oh8l., it is nccessary to find a free bucket. insert oh81 in i,
and then add the bucket to chain 1. However. if the only free bucket is bucket 5 and the
repository crashes before writing page B but after writing page A in OHS. then the chain

becomes incomplete. as shown in Figure 4-14.

,OThus, incompiete chains are caused not only by non-atontic insertions of abject headers, but also by bad

OHS pages.
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4.1.2 A Modified Set of Hash Table Algorithms

Here we describe simple modifications o the inscrtion. deletion and search algorithms
that make the tash table self-recovering with respect to the stractural damage that has just
been described.  First straightforsard consistency  checks are incorporated into the
algorithms in order o detect defects in a chain before any operations modity the chain,
Theno if a detect is discovered. a simple correction procedure is applied in order 1o return

the chain o a state in which it can ke salely operated on.

In order o simplity the eaplanc ions of the modified algorithms. a defective bucket is
detined o mean a backet with one of the following properties:
1. The bucketis supposed o cor tain an object header but instead. is empty.

2. The bucket contains an objec header whose home bucket is not the first bucket
ol the chain o which itis linked, and therefore, does not belong in that chain.

3. The bucket is located on a bad OHS page. and thus, cannot be accessed.

In the modified algorithims, every chain that is touched is checked to ensure that none of
its buckets are defective. I a defective bucket is found. then the link of the preceding
bucket (which points to the defective bucket) is changed to nil. thereby separating any
merged chains, breaking any cycles before the hash table algorithms become trapped in
them. and repairing the improper link in any incomplete chains,

Mare specitically, the modified secarch algorithm is as follows (note that all of the changes

and additions are italicized):
1. Hagh the given object header to the home bucket, X,

2,10 bucket X is empty or contains an object header whose home bucket is not
bucket X. then teriminate unsuccessfully,  Otherwise. continue  searching
through chain X until cither the ohject header in question is found ., a defective
bucket is found, or until the end ol the chain is reached.

3 00 the end of the chain is reached then terminate unsuccessfully. [/ a defective
bucket is found then change the link of the preceding bucket to nil, and terminate
unsuccessfully. Otherwise return the object header that was found.

The scarch algorithm only checks the buckets that it touches during its normal course of

el o b e




scarching. In other words. when the search algorithm finds the object header in question, it

terminates at that point, instead of continuing to check the remaining buckets towards the

cnd of the chain.  Any crrors that are located further down the chain can be detected and
corrected just as casily by the next operation that touches the final part of the chain. since

the search algorithm does not modify the chain.

Next. the moditied insertion algorithm is as follows (again, all changes and additions are .
italicized): :
1

1. Perform the scarch operation 9n the object header. |

2.1F the scarch terminates sucessfully. finding an older version of the object
header in some bucket B. then insert the updated version of the obje et header in
B and terminate. Otherwise, hash the object header to the home b cket. X. Do 1
onc of the following: ;

a 1f bucket X is ecmpty, or contains a deleted object header whose home
bucket is bucket X. then simply insert the new object header into bucket
X.

A adbs i

b. Il bucket X contains a valid object header whose home bucket is bucket X,
then check for another bucket on chain X that contains a deleted object
header, If one exists then insert the object header there. Otherwise, find
another available bucket. Y, insert the object header in it. and add it to the :
end of chain X.

£

¢. I bucket X contains an object header whose home bucket is not bucket X,
then bucket X must be part of another chain beginning with bucket
Z. Thus, it is necessary to move (he object header presently in bucket X to
some other bucket.  Starting with bucket 7. scarch down chain Z until
either a defective bucket is found. a non-defective bucket containing a
deleted object header is found, or until the end of the chain is reached. If
a non-defective bucket. D. containing a deleted object header is found,
then move the object header in bucket X to bucket D, If a defective bucket
is found then change the link of the preceding bucket to nil. and continue us
if the end of the chain was reached. W the end of the chain is reached, then
move the object header in bucket X to a free bucket. b and reroute chain
Z through bucket 1. Then, once the old object header has been removed
from bucket X, insert the new object header there, b

POV PSR
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The insertion algorithm docs not need to eaplicitly include a consistency check for chain :j
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X because. as its first step. it eaccutes the search algorithm (which checks for
inconsistencies) on chain X. On the other hand. it does have 10 cheek through the buckets in
chain Z. In fuct, every bucket in chain 7 must be checked. regardless of the relative position
of bucket X in the chain (unlike the consistency check performed within the secarch
algorithm).  The reason for this is that chain 7 is 1o be modified in such a way that may
make a ¢ycle invisible 1o the current cycle detection procedure. as was demonstrated on

page 63.

This might lead one to believe that when performing an insertion. the check pertormed
implicitly within the scarch algorithm on chain X is not sufficient because chain X nay still
contain a ¢ycle when the insertion algorithm alters it. However, it is sufficient because if a
bucket is found to contain the object header before the end of die chain is reached, no
structural changes will be made to the hash ble since the object header will only be
reinserted in the same bucket. Thus. since nothing will be done to disturb any cycles or
merges further down the chain, the next operation that exccutes on the chain will still be
able to detect any inconsistencics.  In addition, if the object header is not found to exist
alrcady in some bucket, then the scarch algorithm will have checked through the entire
chain in the process of looking for the object header and will have corrected any
inconsistencies that it found.  For these reasons, it is not nccessary for the insertion

algorithm to include an explicit consistency check for chain X,

FFurthermore, since the deletion algorithm does not make any structural changes to the
hash table, it docs not have to be modified at all. Thus, since it is comparable to the search
algorithm in its requircments for error detection and correction and includes the scarch
algorithm as its first step, the chain that contains the object header to be deleted will be

implicitly checked and corrected.!!

n The alrorithm for tinding a free bucket has not been described in detail because it searches through the disk
piges 1 some optimum order with respeet to disk aceess time and is fairdy implementation specific. Even
Hiough it does not wse chaiming o guide its searches for bockets that can be freed up, whenever it actually
removes i buchet Irom g chain, it must do a consistency cheek on the entire chain (as is done in the insertion
abzonthin) and eak the chain if any defective buckets are detected. In this way, it will not modify a cyclic
chan i such o way that would make the evele transparent o the simple detection procedure.
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Consider once again, the chain in Figure 4-11 on page 67. 1tis a merged chain consisting
of chains 1 and 12. and also contains a cycle.If the insertion of 0h27 had been done using the
modified algorithms instead of the old ones described in Chapter 3. then the cycle would
have been broken and the insertion would have proceeded properly.  First. the search
algorithm would have terminated unsuccessfully. Thus, oh81 would have been moved and
its chain would have been rethreaded through the new bucket. In the process. cach object
header in chain 1 would have been checked in order to ensure that its home bucket was
bucket 1. However. bucket 12 would have been found to contain oh72. Since oh72°s home
bucket is bucket 1. the link from Fucket 7 to bucket 12 would have been changed to nil,
Then, once the two chains that were merged had been separated and the cycle had been
broken, as itlustrated in Figure 4-15, oh81 would have been moved 1o another free bucket
(since there were no buckets alreadr on chainl with deleted object headers). Finally, chain
1 would have been rerouted through the bucket containing oh81 and oh27 would have been
inserted inmo bucket 7. forming a new. separate chain, as shown in Figure 4-16. Note, that
cven though the cycle was broken, chain 12 and chain 1 were still left merged at a second
link between bucket 12 and bucket 3. 1t was not critical to correct this merge during the
inscrtion of oh27. since the bad link would be broken the neat time an object header was

inserted in chain 12.

All other examples that were given in Section 4.1.1 would also have worked correctly if
the modified algorithms were used. Since the changes made to the algorithms for searching
and inserting object headers in the hash table ensure that the internal structure of the table
is always correct or detectably incorrect, crashes cannot alter the behavior of the hash table
algorithms.  In other words, they cannot decrease the efficiency of the algorithms nor can

they prevent them from terminating.

4.1.3 Obsolete, Lost and Duplicated Object lHeaders

There are two ways in which the object header table can be damaged, making it

inconsistent with the current state of the object versions in VS, First, an object header can

become obsolete if it is modified in the page buffer but a crash occurs before the page is

n it
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written out to the disk in the modificd state. Even though the object header appears to be

valid, it contains out of date information about the object.

Sccond, an object header can get lost if a failure causes the OHS page on which it is
located to go bad, or a failure occurs before all pages that have been modified by the
insertion algorithm have been written from the buffer into OHS.  For example, consider

chain 1 in Figure 4-17 and supposc oh66 is to be inserted in the hash table.

0 5 10
1 oht Vier——®| 6 | oh21 V |@f————p (11| ohd41 v .Tl
2 7 12
3 8 13
4 9 14
Page A PageB Page C

Figure 4-17: Pages A, B and C Before Oh 66 is Inserted

Before inserting oh66, oh21 has to be moved to another bucket and chain 1 has to be
rerouted through that new bucket. The final state of the pages in the buffer, after the
inscrtion is correctly exccuted. is illustrated in Figure 4-18. Now, suppose page B is written
on the disk in its new state but the repository crashes before page A is written out. Both
oh21 and oh4] become lost by virtue of the fact that they are no longer linked to the chain
in which they belong, as shown in Figure 4-19. The noimal scarch procedure will not find

them because it will terminate after searching through buckets 1 and 6.
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Figure 4-18: Correct Insertion of Oh66
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4.1.4 Recovery of Lost and Obsolete Object Headers

In order to recover a lost or obsolete object header. the repository must restore the
current version reference. the token reference. the commit record reference and the end
pscudotime. First, the three references can be determined from the current version or token
in VS, as follows. The repository scarches sequentially backwards thyough VS from the VS
write pointer until it finds a simple or root version image for the corresponding object. This
version image will cither be the current token. an aborted token or the current version. In
order 10 determine which of three “tis. the repository must check the state of the commit
record that is referenced by the version image (assuming for now. that the commit record

s already been recovered).

If the state of the commit record is UNKNOWN. then the version image is a token and
the three references in the object header (current version reference., current token reference.
commit record reference) should be set to the token's VS address, previous version
reference and commit record reference, respectively. On the other hand. if the state of the
commit record is ABORTED, then the version image is an aborted token and the object
header’s token and commit record references should both be set o nil. Furthermore, the
previous version referenced by the aborted token is the object’s current version so the
current version reference of the object header should be set to point o that previous version
image. Finally, if the state of the commit record is COMMITTED. then the version image
is a version and there is no token. Thus. the three references in the object header should be

set to the version image’s VS address. nil, and nil. respectively (using the order above).

Now. the remaining value that the repository must restore in the object header is the end
pscudotime of the current version or token. The repository simply sets this ficld 0 the
pseudotime of recovery because that pscudatime is the carliest possible pscudotime at
which it is guaranteed that no request has read the version or token. The exact, original end
pseudotime may have been even carlier but cannot be casily determined by the repository.
Thus, the pseudotime of recovery is satistactory since it still ensures that all atomic actions
are properly synchronized in their accesses 1o the object even though some atomic actions

may be aborted unnecessarily duce to the arbitrary extension of the end pseudotime. Section
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4.3 will discuss how the repository determines the pseudotime of recovery.

Unfortunately. there are some complications o the recovery of lost and obsolete object
headers.  First of all. the repository cannot discriminate between an obsolete and current
object header, using only the information in the object header. Second ot all. the repository
does not have any bound on its scarch through VS, when recovering alost or obsolete object
header. Sinee VS is always increasing in size, it is not aceeptable for the repository (o do an
unbounded search every time it has o recover an object header. Thus, we need a means for
detection of obsolete object headers and an efficient means for correction of buth obsolete
and lost object headers. Tor these reasons, recovery epochs and OHS chieckpoint epochs

have been developed.

4.1.5 Recovery Epochs

A recovery cpoch is the time period between two repository crashes.  Fach recovery
epoch is distinguishable from the others by its recovery epoch number, or REN, which is a
monotmicatly increasing number. Whenever the repository  crashes and  restarts, it
increases its REN. which it maintains as part of its global state.  Also upon restarting, the
repository marks the beginning of the new recovery epoch in VS by writing (in VS) a
boundary version image. called a recovery epoch mark, or REM. which contains the new
REN. This REM enables the repository to determine in which recovery epoch any version

inage was created.

Now. in order to determine whether an object header is current or obsolete, the
repository must check that the object header contains a reference to the most current simple
or root version image of the object in VS, If the object header doces not contain a reference
to the most current version image of the object. then the repository must update the object
header. However, the repository only has to check cach object header once per recovery
epoch, since it marks the object header with its current REN after the first check.  Thus,
whenever an object header is accessed. its REN is compared to the repository’s current
REN. If the two REN's are the same then the object header is current.  Otherwise, the

object header is cither obsolete or s still current as of the new recovery epoch but has not
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been accessed since the last time the repository crashed. Therefore, if the REN of the object
header is not the same as that of the repository, then the object header must be certified o

be current.

The recovery manager, which wil' be discussed in Section 4.3, is responsible for certifying
the object headers.  In order to certify an object header. the recovery manager scans
sequentially backwards through VS, searching for a more current simple or root version
image of the object than the version image referenced in the object header. 1 it finds one,
then it updates the object header's references and end pseudotime and marks the object
header 1o be current by setting the object header’s REN (o that of the repository,  if the
recovery manager does not find one. then it just scts the object header's REN (o that of the

repository. since the object header is still current.

In order 10 certify a potentially obsolete object header, the recovery manager only has o
scarch through the portion of VS that is bounded by the REM of the current recovery
cpnch12 and the REM of the recovery epoch that corresponds to the object header's REN,
The recovery manager docs not have to search through the current recovery epoch in VS
because if the object header had been accessed in this epoch its REN would be current,
Furthermore. the recovery manager does not have to search past the REM that corresponds
to the recovery epoch of the object header’s REN sinee that REN indicates that the object
header was last certified w be current in that recovery epoch. Thus. if the recovery manager
does not find a version for that object by the time it reaches this REM in VS, then the object
header is still current, and the recovery manager only has to update the object header's

REN.

The recovery manager’s scarch through VS can be further minimized if recovery epochs
are artifically created whenever @l OHS pages that have been modified in the buffer have
been written out to the disk (i.c.. when the repository becomes idle). and il each RI'M is

marked as cither a crash or non-crasi RENM. Using this scheme, the recovery manager

N
L!'hc current recovery epach is the new recovery epoch that began when the tepositony restarted afler the

most recent crash,




would only have to scan through the non-crash recovery epoch immediately preceding the
crash recovery epoch. For example. suppose that the repository crashes during recovery
epoch 8 and upon restarting. writes a crash REM for recovery epoch 9 into VS, as shown in
Figure 4-20. I an object header with an REN equal to 5 is accessed alter the crash. then the
recovery manager only has to scan through recovery epoch 8 for a more current version
image because all OHS pages that were modified during recovery epochs 5.6, and 7 are
Enown to have been written out by virtue of the fact that they all precede another non-crash

recovery epoch,

CRASH NON-CRA3H NON-CRASH NON-CRASH CRASH
REM #5 REM #6 REM #7 Ri.M #8 REM #9

v v vV Vv

Recovery Epoch #5 Recovery Epoch #8

Figure 4-20: Recovery Epochs In VS

Thus, the benefits of recovery epochs are twofold.  Fach object header only has to be
checked for obsolescence once per recovery epoch and when it docs have to be checked, the

scarch through VS for the current version image is bounded.

4.1.6 OlIS Checkpoint Epochs

Even though recovery epochs exist. there is still a problem in bounding the recovery

manager’s scarch for the current version image of a lost object header, since there is no
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object header to provide an REN, For example. if the OID of a supposedly lost object
header had never been assigned to any object because of a crash. then there would not be
any version images in VS with that OID and the recovery manager would have (o search
through all of VS before it could finally figure this out.  Similarly. if the object
corresponding to the lost object header s very old. then in order to find the current version
image. the recovery manager would have to scarch through a large portion of VS, In order
to prevent these unbounded scarches. a table that checkpoints the object header
information for every object that is current. is periodically created in VS thereby enabling
the recovery manager to bound its search through VS with the location o “the most current
completed table. This table is called a checkpoint table and the period of time over which it

is created is called a checkpoint epoch.

Fach entry in a checkpoint table consists of the object’s OID as well as a reference to the
version that is current at the time the entry is created.  Since the construction of a
checkpoint table may consume a large amount ol time. it is not acceptable tor the repository
to temporarily discontinue service in order 1o take a snapshot of the state of all object
headers at one specific point in time, {Instead, the checkpoint table is created in the
background by a separate process. called the checkpoint manager while the repository
aceepts and services external requests. Thus. a checkpoint table does not necessarily capture
the current state of every object header at one particular point in time but instead, it
capturcs some state that was current for cach object header at some time during the
checkpoint epoch in which the table was created. Further, since the checkpoint table is
created in VS while versions are also being created, its entries may be interfeaved with the
versions, Thus. all of the checkpoint entrics are linked together in order to make it possible
to scarch through the version images of the checkpoint table exclusive of the rest of VS,
Finally. before the checkpoint manager starts o create a new table, it writes a checkpoint
epoch mark, or CEM_in VS in order to mark the beginning of the new cheekpaoint epoch,

The checkpoint manager has 1o be sure to include an entry in the chechpoint table for

every object that existed during that checkpoint epoch. However, the checkpoint manager

would not necessarily do so ifitsimr’, created a checkpoint entry for every object header in
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OIS sinee some object headers may have been lost. On the other hand, it would do so if it
searched trough VS for all of the current version images and created a checkpoint entry for
cach one it found. However. this would be at least as bad as searching through VS for every
lost object header, if not worse. Sincee the original reason [or creating a checkpoint table was
o nyinimize and bound the recovery manager's search through VS, the checkpoint manager
shoutd not have to make an unbounded scarch i order o ereate the tble. Therefore. it was
neeessan o come up with some other seheme that would account for esery object that

enisted during a checkpoint epoch,

The checkpoint manager creates the chedkpoint table, as follows. When cach object is
first created in the repositony . the heckpoint manager ereates a checkpoint entry for it in
the current chechpoint table, Then the chedkpoint manager accounts for the remaining
objects enisting in the checkpoint epoch by updating cach entry that evists in the checkpoint

table of the previous chicckpoint epoch. and placing it in the new checkpoint table.

t order to update an old checkpoint table entry, the checkpoint manager examines the
corresponding ohject header and extracts the reference 1o the current version or token.
However, il the object header is tost or obsolete then the checkpoint manager must wait
until the recovery manager certifies the object header before updating the checkpoint entry.
Also. if the object header indicates that the object was deleted in the previous checkpoint
epoch. then the checkpoint manager does not write any updated entry for it in the new
checkpoint table. Thus, it can be seen that this method of creating successive checkpoint

tables from previous ones is guaranteed to include entries for all objects that ever existed in

cach checkpoint epoch. without having to scan through all of the version images in VS.

When scarching for the current version image of an object whose header appears to be
lost. the recovers manager should cither find an actual version or a checkpoint table entry L
containing a reference o the current version, by the time it reaches the CEM ol the last .
completed checkpoint epoch in VS (which will be referred to as the limiting CEM).

Otherwise. the object has been deleted in some previous cheekpoint cpoch or it never

eaisted. For example, consider the checkpoint epochs in VS that are illustrated in Figure 4-

21, Since the table for checkpoint epoch # 3 is still being ercated, checkpoint table #2 is
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the last completed checkpoint epoch, This means that CEM #2 is the limiting CEM and
thus, the recovery manager would only have to scan through to CEM #2 before it could
conclude that an object never existed or was deleted. Thus, CEM's provide the lower limit

for the recovery manager’s search for lost object headers.

Current
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C = checkpoint table entry
V = any other type of version image
CEM #X = beginming boundary of checkpoint epoch # X
CPT # X = checkpoint table for chzckpoint epoch # X

Figure 4-21: Checkpoint Tuables In VS

In order for CEM’s to be valid limits for the recovery manager's scarches through VS, the
repository’s processes must never confirm the creation of an object (to an external node)
until the checkpoint manager confirms that a checkpoint entry has been created in VS, since
if they did. then it would be possible for a crash 1o occur after a confirmation was sent out
but before the entry was made for it in the checkpoint table. In other words. it would be
possible for an object 1o exist without having a corresponding entry in the checkpoint ble
and the recovery manager might incorrectly conclude that such an object never existed, if

the corresponding object header ever got lost.

For cxample, assumc that the creation of object A is confirmed 1o an external node
before the checkpoint manager confirms the creation of the corresponding checkpoint

entry, and that the repository then crashes before the entry is created.  Since cach
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subsequent table is created from the previous wble. an entry for vbject A will never be
created in any of the checkpoint tables. Now, if the object header for A gets lost at some
tlime when the current version ol A is located further back in VS than the limiting CEM (sce
Figire 4-22). and the repository receives a request 1o read A, then the recovery manager, in
attempting to find its current sersion in VS, would incorrectly conclude that the object was
previously deleted or neser existed, since it would not find a version or checkpoint entry by
the time it reached the limitng CEM. However, i the process that ereated object A had not
sent out the confirmation in the first place. then the object stll would have been nonexistent

and no external node would bave sent any requests for it
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cutrent C = checkponttable entry
version

of A V - any other type of version image

CEM # X begmning boundary of checkpont epoch # X
CPT # X - checkpomnt table for che ckpoint epoch # X

Figure 4-22: No Checkpoint Fntry for Object A

Finally. there is one decision that still has to be made concerning checkpoint epochs, that
is how often should the chechpoint manager start a new checkpoint epoch?  The only
constraint is that a new ¢poch cannot be sterted until the checkpoint manager has made
updated entries in the current table for all of the entries in the previous checkpoint table,

As long as this requirement is met then the checkpointing mechanism will work correctly.

‘The discussion of how this decision should be made is deferred until Chapter 5, which




analyzes the costs of the necessary tradeofTs.

4.2 Recovery of Commit Records

Now that the recovery of objects has been described, it is necessary to explain how the
commit records are recorered. Recall that the versions of the commit records (as well as
those of the objects) are maintained in VS, which is stable storage. Thus, VS i itsell also
contains the current state of the commit records.  Flowever. the repository aceesses these
versions of a commit record throug 1 the commit record table. which is only kept in volatile

storage. Fhus, when the repository crashes, the commit record table is completely lost,

Upon restarting. the repository creates an empty table and adds etries as new commit
records are created. Also. when the repository restarts alter a crashe it implicitly aborts all
commit records that ware in the UNENOWN state at the ume of the erash. since there s a
good probability that the broker that created the commit record would have aborted it
anyway. due to the crash. Howevei. this abortion s not done explicitly, since the commit
record table no tonger contains entries [y any of the commit records that were created

hetore the crash. Instead. the abortions are done as follows.

As the recovery manager scans sequentiatly through VS in order 10 recover object
headers. it creates entries (undess they already evist) in the commnt record table for any
verston inages that it encounters that contain the final state of a commit record. However,
it only creites these entiies if the actual stite is CONINITLTE DY Ihis, when the fecovery
manager is actually recovering an object header, if the corresponding token’s commit record
is not found in the commit record table then that commit record has been aborted. Fither
the recovery manager had found the final state version belore it reached the token in VS but
did not create an entry Tor it in the commit reeord table sinee its state was ABORTED, or

clse there was no final state version in VS and thos, the commit record was aborted by

”Asyn('hmnuu,\l,\. some other process will eventially delete these entiies frone the commit record table, after
rechecking that the obpect headers of all wkens in the linked list have been updated 1o retlect the token’s
(commit iecord’s) final state.
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definition.

Furthermore. the broker that created a commit record that was automatically aborted is
cventally informed of this automatic abortion when it attempts to retransmit any
uncontirmed create-token requests, or tries 1o set the final state of the com nit record. Upon
heing informed. the broker retries the entire atomic action. Thus, the repository’s recovery

of commit records supports Swallow's atomic action protocol,

4.3 Recovery Manager

Fhis sectton describes how the recovery manager coordinates the rep sitory’'s recovery
activities and interfaces with the other repositony, progesses when they access object headers
that hine o be reconered. Inonutshiell. the recovery manager restores tie repository 0 a
state in which it can resume servicing requests from other Swallow nodes wter a crash and
then runs in the background. during the repository s normal course of activities. certifying
the object headers and wemporarily ereating entries in the commit record table that Lilitate

the recovery of these object headers.

Fhus, when the repository restarts after o crash, it does not start aceepting messages until
the recovery manager signals that the global state data has been properly updated in State
Storage and encached in volatile storage. However, once this signal is reccived. the

repository resunes s communications with the other Swallow nodes,

Ihe only values in State Storage that the recovery manager has to update are those of the
VS write pointer, the last uid assigned to an object or commit record. the latest pseudotime
specified by any request. and the repository’s REN, In order to simplify the description of
the recovery of the values of the VS write pointer and the last uid assigned. several terms are

defined as follows:
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alue in State Storage of the VS write pointer

X = the number of pages that must be written in VS before WP is updated
in State Storage

LUA = value in State Storage of the Last uid assigned to an object or commit
record
Y = the totat number of aid's that must be assigned to objects and commit

records before LUA is updated in State Storage

Both WP and LUA are periodicaily written into State Storage but the active copices are
updated in volatile storage. The values N and Y above control the frequency and thus the

cost of State Storage updates. Conversely. they also control the cost of recovery.

In order 1o restore the VS write pointer, the recovery nianager must search sequentiafly
through the region in VS, bounded by the two pages. WP and WP+ XL uatil it finds the last
VS page that has been written. Furthermore, in order o restore the current value of last uid
assigned o an object or conmmit record. the recovery manager simply assunies that Y uid’s
were actually assigned before the erash, and incrcases 1UA by Y I this way the repository
is still guaranteed W assign amigue id's o the obgects and commit records even though some
uid’s will never be assigned. (Since the uid is a 64 Dit number, it is not critical o some uid’s

are wasted.)

Mhus. X and Y are tuning parameters A darge N value increases recovery time and a
targe Y vadue increases the waste of wid's upen atlure. Balancing these costs against the cost

of State Storage updates shouald be simple.

Nexat. the recosery manager niast restore the Ltest preadotime speciticd by any request
sinee this pseudotime is used as the pseuadotime of recovery. Althougly the working copy of
this value is kept in volatile storage. itis also stabilized by recording, on cach VS page. the
vitlue of the Latest end pseudotime of ail versions in VS up o and including that page. Thus,
upon restarting, the recovery manager simply accesses this value from the last VS page

written into VS,
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The remaining value of the global state that the recovery manager must update is the
repository’s REN, since the REN found in State Storage is obsolete due to the fact that the
repository just crashed.  Thus, the recovery manager increments the value of the REN
found in State Storage and writes an REM for the new recovery epoch into VS,
Furthermore. a volatile copy of the current REN is niaintained in primary memory o speed

up the process of cheeking object headers.

There is one final task that the recovery manager must perform before signalling that it is
safe for the repository o accept external messages. 1t must restore the checkpoint manager,
since the checkpoint panager muse continue creating the carrent chiechpoint table from
where it left of U when the repositor - crashed. To speed recovery. itis arranged that every
V'S page contains a pointer to the most current checkpoint entry written into VS, Thus, in
order 1o restore thie checkpoint nanager, the recovery manager obtains from the last page
written into VS, the location of the Bast chieekpoint entry that was written into VS and pass 2s
it on to the chechpont manager. Then, the checkpoint manager can actually aceess that
checkpoint entry, find the most carrent checkpoint entry (in the cutrent checkpoint table)
that is also e the previoas chiechpotat table and reseme updating the eatries in the new

table, starting with that checkpoint entry in the previous table.

For example, assume that the repository is recovering after o crash and that the state of
VS s depicted in Figare 421 on page 82, In this case, the recovery manager would pass
the VS address of the chicchpaoint entry for object 101 10 the chockpoint manager sinee it
contains the most current checkhpoint entey that was written into VS, Then, the checkpoint
manager would determine that the checkpoint entry tor object 5 is the most current
checkpomnt entey written into VS that is also Tound in the table created in chechpoint epoch
#2.and thus, would continue ercating the table for cheekpoint cpoch # 3. by starting with

the entry for object 2 found i the wable for checkpoint epoch #2,

Once the recovery manager completes all tasks., described thus far, the repository begins
to accept and fulfill external reguests, even though some of the repository’s data may still be
incorrect. ‘Thus, when another repository process aceesses an object header that is lost or

contains an old REN, it must wait until the recovery manager certifics the object header.
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Once the recovery manager completes the certification or concludes that the object header

corresponds 10 a deleted or non-existent object. it signals the waiting process. That process
then reaccesses the object header and simply continues with its regular tasks. if the object
header exists. However. if the object header is still lost. then the process (like the recovery
manager) concludes that the object header corresponds to a deleted or non-evistent object

and takes the appropriate alternate action,

In order o avoid repetitious scanning through VS, the recovery manager certifies the
object headers for all version images that it accesses as it searches sequeatiatly backwards
through VS, I addition. during th s sweep through VS the recovery maniager temporarily
creates entries for all committed commit records that it encounters and re noves the entries
when the scan passes the initial commit record versions, sitce carlier versions will not aceess
the commit record. Then. when the recovery manager i oecoveting an obyedt header and is
tning to determine whether the current version inxage s a ohen or 4 version. it knows that
the version image is a tohen af there s oo entey in the comnut reand taible for the
cotresponding commit record. and conversely . knowe that the soraon miage is an aborted

tohen if there is no catry in the comnnt record wblke.

However. the recovers manager docs not pertorm ts scan thiouph VS continuousty in the
background untib it fimshes.  Instead. 1t scans through VS cattving alb conresponding
object headers until there are no more processes wating tor obpect headers 1o be certified.
Then it halts temporanby icmembenng whorc it it ol VS and resunies ather when the
repository becomes adle thas no pending requests), ar when sore process needs anather

object header that has not vet been certficd. i order o fultil) a request.

Thus, while the repositony has pending requests, the recovery manager onhy has o scarch
through the non-crish recovery epoch that precedes the most recent crash rccovery epoch,
providing that there are no fost object headers. Only e the rare cases where an object
header is lost would the recovery manager have o search throngh VS up to the limiting
CEM while the repository has pending requests, However, since the recovery manager
continues to ceertily object header during the repository’s idle periods, lost object headers

may be recovered before they are required in order o satisfy a request, and thus, their
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recovery will not affect the repository’s response time for fulfilling requests.,

Assuming. for now. that disk failures do not occur in OHS while the recovery manager is
in the midst of certifving the object headers. the object header table will be completely valid
after the recovery manager has made one scan through all of of VS up to the limiting CEM.
Phus. it can signal all processes that are stll waiting for fost object headers 1o be certilied
after it completes this scan. and these processes will correctly conclude that the object

hicaders correspond o objects that were deleted.

However, there is a problem with this reasoning due to the Fact that dick failures are not
controlled cvents and can ocear any time. Usially. when the repository detects a disk
Fatlure ¢had page) in OHS, it crashes sl and restarts all of its recovery mechanisms sinee
OHS nicy no lopger be consistent with AS. But while the recoverny manager is certifying all
ol the object headers, the repositony cannot determine whether a bad page is the result of a
disk tailure from which the repository is presently recovering or whether a subsequent disk
tadure occurred. Therctore. the repository does not crash itselt iF it encounters a bad page

i OHS o the recovery manager s still certify mg the object headers.

Fhis means that the recovery manager can no longer simply signal any processes that are
stll swarting tor fost object headers, adter it completes its initial scarch through VS, sinee any
of these processes could be waiting for an object header that is on o disk page that was
destroved by a disk Failure that occurred after the recovery manager certified that object
header. Thus, it Gind onfy 30 there are st processes waiting for lost object headers o be
cortitied after the recovery manager nahes its initial scan through VS, then the recovery
manager st recheck the object headers tor all of the current objects. That is, it must
cheek the object headers that correspond 1o the checkpoint entries up to the limiting CEM.
Phen, if all of the object headers are still valid. the recovery manager can sighal any
processes that are still waiting. However, i the recovery manager encounters a bad disk
page in OHS during this sccond scan, then the repository will crash itself and restart its
recovery mechanisms so that it can. once again, restore consistency between OHS and VS,
IFurthermore. the repository will crashitself iF any repository process encounters a bad OHS

page after the recovery manager makes its initial scan through VS.
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Thus, the portion of VS through which the recovery manager may have to scan while the
repository is servicing external requests. depends upon the eatent of the damage that is done
to OHS. First. if no object headers are lost then the recovery manager only has 1o search
through the non-crash recovery epoch that precedes the most recent crash recovery epoch.
Second. il some object headers arc lost. then the recovery manager has 1o scan through to
the limiting CEM. Finally, if some process tries Lo aceess an object header on an OHS page
that has gone bad since the recovery manager recovered that object header, or tries to access
a non-eaistent or previously deleted object header, then the recovery manager not only has
to scarch through to the limiting CHEM, but also must reaceess all the checkpoint entries up

1o that limiting CEM (in order to recheck their corresponding object headers).

4.4 Justification for Lack of Recovery of Pending Messages

Since all data describing the pending messages is kept in volatile storage. when the
repository restarts fler a crash. all this data is lost and the repository is Teft with no recall of
the pricr state of these messages. However, the repository does not hinve to remember the
prior state of pending messages since it does not continue o process these messages from
where it left off at the time of the crash,  Instead. upon restarting. it accepts nes messages

and starts from scratch.

Now that all of the repository’s recovery miechanisms have been deseribed in detail. it is
possible to explain why the repository does not have o eaplicitly recover its pending
messages after a crash. Basically, there are three rcasons. First, since the repository satisfics
all requests atomically, no data Wil remain partially modified. The data will cither be
completely modificd or not modificd at all. Second. since the protocols include provisions
for any communications crrors that might occur. both the sender and receiver of the
message know exactly how to react when any of these errors occur, inally, since all
repository  requests  are repeatable. as demonstrated in the table in Tigure 4-23,

retransmissions do not cause the same modifications o be done twice to the same data.

The Tollowing example, in which the conscquences of not recovering a muoltiple packet
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Create-Object: In order to decide whether or not a create-object request is a
retransmission. the repository would have to search through VS for a version that
contains the same pseudotime and commit record id as those named in the
request. However, this is totally unnecessary, since the original request was
uncoenfirmed the requestor does not have the oid and cannot access the object
that the repository originally created. Therefore. for all intents and purposes the
object still does not exist, so the repository can create a new object when it
receives a retransmitted create-object request in the same way as if the request
was not a retransmission.

. Delete-Object: If the object is already deleted when the request is received

then repository just contirms the deletion. Otherwise, the deletion is performed.

.Read-Version: Does not mocify data, so retransmission is confirmed in exactly

same way as original request.

. Create-token: When the repository receives the retransmission and tries to

create the token it will find that a token already exists in the objec: history. It
checks whether or not the request is a retransmission by checking the
pseudotime and commit record id of the token. If they are the same as the
pseudotime and commit record id named in the request then it knows that this
request is a retransmission and has already been satisfied. The repository simply
confirms the creation of the token.

. Test-Commit-Record: Same as Read-Version

. Abort-Commit-Record: Once state of commit record is decided it is never

changed 30 repository will simply respond with the final state of the commit
record.

. Commit-CommitRecord: Same as Abort-ComRec

. Add-Reference: Repository will not add a representative version to a commit

record’s reference list if that version is already on the list. Repository  will simply
respond with confirmation that reference has been added.

. State-ls: If the repository has not already encached the final state in the commit

record representative then it does so. Then it returns a delete reference response
(even if the state had already been encached).

Figuse 4-23: Handling of Retransmitted Requcests
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create-token request are described. should demonstrate that these reasons are valid. Since a
create-token request may be left in one of four inconsistent states after the repository

crashes. the example will consist of four explanations. one for cach possible state.

State I The repository only received the initial packet of the message but had not yet

begun to process it. Furthermore, the repository did not send any response to the broker,

Since no data was modified. there are no inconsistencies in the repository's data.
Furthermore, since a confirmation was never sent to the broker. the SMP module at the
broker's node will eventually time out and abort the message. at which pcint the broker will
cither abort the atomic action (send an abort-commit-record reguest) or retransinit the
request. Subsequently. the repository will cither start from scrateh if the broker retransmits
the request, or will abort the cominit record as usual, if the broker sends an abort-commit-

record request.

State 2: The repository reccived some or all of the packets but did not write all of the VS
pages containing the version.  Furthermore, the repository did not make the necessary

modifications to the object header table nor did it send any responsc to the broker.

In this case, the token still does not exist since the root version image. which is always
located on the most current VS page containing the token, was never written.  In addition,
the token is not linked into the commit record’s list of tokens since the root version image is
the only version image of the token that contains the link. Furthermore, since the object
header table was not modilied. the object header stll points to the current version. During
recovery. the recovery manager will not change the object header to point to the partially
written token because it will not find a root version image and ignores the fragment version
images. Finally, since the confirmation was not sent to the broker, the broker will cither
abort the atumic action or retransmit the request and the repository will react in the same

way as was described for State 1.

State 3: The repository received all packets and wrote all VS pages containing the token.
Thus. by dctinition. it also added the token to the commit record’s list. However., it made

some or no modifications o the object header table and did not send a response to the
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broker.

In this case. the recovery manager will eventually update the object header to point to the
newly created wken and the hash table algorithms will restore consistency 1o the object
header table. Furthermore. since 10 confirmation was sent to the broker, the broker will
cither abort the atomic action or retransmit the create-token request 1F the broker sends an
abort-commit-record request. then the repository aborts the commit record (il it has not
already been aborted by the recovery manager) and confirms the request. On the other
hand. it the broker retransmits the ereate-token request. then the follewing sequence of
events oceurs.  First, the repository process that is handling the request aceesses the
appropriate object header. H the recovery manager has not yet recovered the object header,
then the process must wait until the recovery manager signals that the object header has
been certified. Then, when the process reaceesses the object header it creates a token since

4 nd atlempts to add the token to the

the recovery manager deleted the existing one
appropriate commit record’s list of versions. However. in attempting to add the token to the
commit record’y list, the process discovers that the commit record has been aborted. Thus,
the process deletes the token and sends a rejection reponse to the broker, specifying that the
commit record has been aborted.  Subsequently, the broker will retry the entire atomic

action.

State 4: The repository received all packets and made all of the necessary modifications,

but did not send a contirmation to the broker.
The repository handles this state in the same way as it handles State 3.

Thus, it can be seen from this cxample that all inconsistencics in the repository’s data
caused by partially processed create-token requests are climinated by the repository’s
recovery mechanisms. Furthermore, the broker is not left hanging when the repository fails

0 respond, since the SMp. request/response and atomic action protocols provide alternative

14 . » ;
When the recovery manager recovers the object hieader the commit record will have been aborted. Thus,
the recovery manager defetes the oken that was ereated when the original create-token request was received, by
changing the object header's token referenc to nil.
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modes of behavior. In fuct, for all types of messages that may be sent 1o the repository, the
combination of the repository’s internal recovery mechanisms and the Swallow protocols

cnsure that the global consistency of all clients” objects is restored.

4.5 Summary

Thus, the recovery mechanisms used to restore order within the repository were
presented in this chapter. First it was shown how the structure of the object header table is
recovered implicitly. using a specic | set of hash table algorithms. instead of by performing
an exhaustive consistency check on the entire table structure right after a crash. Next, it was
shown how the object headers thamselves are recovered from the current versions in VS,
using the recovery and checkpoint epoch mechanisms in order to determine the nced for
recovery and 1o bound the lincar secarches through VS, Then, it was shown how commit
records are implicitly aborted if their state was not finalized before the repository crashed,
and how committed commit records are temporarily entercd in the new commit record table
in order to speed recovery of the object headers.  Finally. it was shown how the recovery

manager restores the repository’s global state as well as how the recovery monager

coordinates all of the recovery activitics so that it only has to perform a single scan through
VS.
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Chapter Five

Evaluation of Recovery Mechanisms

The eflecis of the recovery mechanisms on the performance of the repository are
evaluaied in this chapter.  However, since the repository has not yet been implemented
there are no real siatistics on how long it takes the repository to satisfy the various types of
requests.  Still, it is possible o estimate these time costs in terms of the number of
enderlying disk accesses that must be done in order to do recovery and fuafill requests. This
is a useful method of analysis since these disk accesses are likely to be the most time

consuming tasks that the repository performs.

First. Scctions 5.1 and 5.2, derive cquations that calculate the total number of disk
accesses that the recovery and checkpoint managers. respectively. require per recovery
epoch. Next. Section 5.3, calculates the average cost of of these recovery mechanisms per
request. for a typical example. From this calculation it is possible to gain some insight into
how much of the repository’s response time can be attributed to the recovery mechanisms
and how sensitive these response time costs of recovery are 1o the varying characteristics of
the requests and data sent to the repository.  Finally, in order to put these calculations into
perspective, Section 5.4 compares the cost of the recovery mechanisms presented in this
thesis (for the repository) with an alternate set of recovery mechanisms that could have been

used. which are based upon OHS being reusable stable storage.

5.1 Cost of Recovery Manager
The cost of the recovery manager includes the cost of updating State Storage and
encaching it in Volatile Storage as well as the cost of certifying all of the object headers.

Since the significant cost is that of certitying the object headers. this cost will be analyzed in

detail, but first, a brief description of the other costs is given, as follows.
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The only noticable cost of recovering State Storage (with respect to disk accesses) is that
of restoring the VS write pointer, since the recovery manager has to scarch through some
number of pages in VS in order to find it. This number depends upon how frequently the
value of the VS write pointer is updated in State Storage: the more frequently the value of
the VS pointer is updated in State Storage. the fewer the number of VS pages through
which the recovery manager must scarch after a crash will be.  However, State Storage
updates are fairly costly (in terms of disk accesses) and should not be done too often while
the repository has pending requests.  Thus, a tradeoff must be made.  in the initial
implemention of the repository. the tradeofT will be made arbitrarily and then. once actual
costs can be measured. the parameter that specitics the frequency of updating the VS write

pointer in State Storage will be fine tined for the optimum tradeoff.

The remaining costs of restoring State Storage depend on its size and what percentage of
it must be cncached in volatile storage. However, since State Storage will be fairly small
(less than one page). these costs should be insignificant compared to the cost of recovering

the write pointer.
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In order 1o derive an equation for the total cost of certifying all object headers in OHS

per crash, it is necessary to define the tollowing variables:

C\,r = thecost of reading a VS page

va = thecost of writing a VS page

COr = thecost of reading an OHS page

COW = thecost of writing an OHS page

X = the number of OHES pages that have to be read inorder ¢ find a

particular object hoader (using the hash table scarch algorithm)

P = average number o version images per VS page
1. = probability that any object header will get lost during a ¢} cckpoint
epoch
M = the REM (beginning mark in VS) of the non-crash recovery epoch
re

that precedes the crash recovery epoch

M = thelimiting CEM (i.e. the beginning of the last terminated
¢ checkpoint epoch)

D = the number of pages in the portion of VS between M and M
re ce

N = thenumber of VS pages in the non-crash recovery epoch that
precedes the crash recovery epoch

lN = the number of version images per N
VN = the number of version images that arc simple versions or
roots of structured versions tor objects per N
ON = the number ol distinct objects for which there are version
images contained within N
EN = the number of checkpoint entries per N
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i = the number of version images per D

I «l
( N l))
VD = the number of version images that are simple versions or
routs ol structured versions for objects per D
VoKV
( N l))
Ol) = the number of distinet objects for which there are
version images contained within D
(O <0 )
N D
El) = the number of checkpoint entries per D
E «KE
( N l))
A = the number of new checkpoint entries that have been

created between repository restart time and the time when the
recovery manager finishes its initiad scan through VS (up to the
himiting CEM)

Using the above definitions, the hasic total cost. C . of the recovery manager per crash
rm

assuming that no object heuders are lost can be specified:

C = ClL/P+XC(V +E)+C O
mb vi N or N N ow N

The terms of the cquation can be explained as follows. The first term in the equation
reflects the cost of reading and examining every version image within N, Since the recovery
manager scans sequentially through VS, it examines all of the version images on a single
page while that page is in the buffer, Thus. the cost of examining the version images is
reduced by a P factor duc to the fact that the recovery manager does not make a disk access
every lime it cxamines a version image.

The second term represents the cost of reading the object headers corresponding to every
version image that is a simple or root version image of an object, or a checkpoint entry, in
order o check that the object headers are current. The cost of reading an OHS page is
multiplicd by X because i order to find a particular object header, the scarch algorithm
must be eaccuted on the object header table, which might imvolve 1eading more than one

OHS page if the object header being accessed is on o chain that crosses page boundaries or
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was damaged. However, very few (if any) chains in the object header table will have these

properties since all of the buckets on a single ¢chain aic almost always located on the same
page. Thus, the value of X is su close to 1 that for all analyses in this chapter it will be

assumed to be 1.

The final term represents the cost of the OHS writes that must be done in order to update
every objeet header, This termy accounts for every object header being wiitten onee sinee it
is assumed that the recovery manager reaches Mr before the repository crashes uguin.l5

o
Thus. for any recovery epoclis for vhich this assumption is not true. this termy will have to
be adjusted.  Furthermore. the cose of the OHS write in this term is not multiplied by a
factor simitar 1o N since the recoverr manager retains the location of the object header when
it first exceutes the search algorithm and can simply rewrite the object header in place

without having o perform the insertion algorithm,

Since object headers sometimes do get lost, C b is not the average total cost of the

m
recovery manager per crash.  In order to caleutate this cost it is necessary to add to C b
m
some pereentage of the cost of scanning between M and M . This percentage, L.,
114 e

represents the probability that a crash will cause object headers 1o get lost.  Thus, the

average total cost, C L of the recovery manager per crash is:
i

C =C +1{C 1T /P +XC(V +E)+C O_+
vi D or D D ow D

it rmb
L v v . tl6
[(C + XC XE_+ AE )] ™}
vr o D D
In the factor mudtiplied by 1., all 1erms cxcept for the starred term are costs that are

comparable to the costs in C . The only difference is that the scan through VS is done
m

15 : . . . Lo .

An object header is pever wntten more than onee. even if there is more than one version for the object

contained withim the recovers epoch e VS, becanse once an ohject header has been certified it contains it cuirent
RENC The reeoveny namager does not rewrite any object headers that contain current REN's,

16 . . . , .
Ihioughout the renainder of this analysis, the reader can assume that any term that is marked with an

asterisk, * as ancluded i the cost only i the worst case. A very Tow probability event has o occur for the term
10 he relevant,
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through the region bounded by Mre and MCe instead of through the non-crash recovery
epoch that precedes the lates crash recovery epoch.  Furthermore. the starred term
represents the cost of rechecking (second scan through VS) all of the object headers for afl
of the current objects. Recall that the recovery manager only doces this if, after it initially
cheeks and certifies all of the object headers. there still remain processes waiting for lost
object headers to be recovered (sce page 89). Only if one or more OHS disk pages decayed
or if some external request erroncously specilicd an OID for a deletea or non-eaistent
object will there be processes waiting after the initial scan. Thus. since both of these events

oceur very rarely, this starred term will not vsually be caleulated into the cost.

Thus, C - is not only the average total oo 1 ol the recovery manager pe. crash but is also
the average response time cost of the recovery manager per crash.  In other words, it
represents the cost of the work that the recovery manager must do in the background while
the repository is satisfying external requests. However, keep in mind that Crml is the worst
case average cost, since the repository may have idle periods in which the recovery manager

can do some of the object header certilication. In Section 5.3 it will be shown how C
mt

affects the average response time of a request.




5.2 Cost of Checlkpoint Manager

The sole cost of the checkpoint manager is that of creating the checkpoint tables. In
order to derive an equation that specifies this cost per crash, some additional variables must
first be defined as [ollows:

U = the number of cheekpoint entries in the table for the last
terminated checkpoint enoch that correspond to objects that
were not deleted in that cheekpoint epoch

B = the number ot cheekpoint entries in the table for the last
terminated checkpoint epoch that correspond to objects Dat
were deleted i that chechpoint epoch

AC . the number of new objects that are created during the
average cheekpoint epoch

R = the number of VS pages written since the previous crash
P = average number of checkpaoint entries per VS page that
¢

contains at least one checkpoint entry

Using these newly defined variables and those defined in the previous section, the

average total cost. C - of the checkpoint manager per crash can be specified:
cnt

c = [C (U-a0 + BYP +C A0 + XC (U + B) +
\1) C vr or

U/P + C AOJR/DJ
¢ YW

Since the updated checkpeint entries are grouped into blocks that occupy a VS page,
thereby eliminating the need to write one VS page for every checkpoint table entry that is
written, the costs of the VS page reads and writes of these updated checkpoint entries are
decreased by a PC factor. However, sinee the cheekpoint entries for newly created objects
are written as the objects are created, it is not possible to group these chechpoint entries into
blocks on the VS pages. Thus, the cost of the VS reads and writes of the first checkpoint
entry created for every object is not reduced by any pageload factor.

The first two terms, C (U-A0 + BYP 4+ C A0, reflect the cost of examining all of the
vr < A\l
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checkpoint entries in the previous chiechpoint epoch table. The third term, XCM(U + B),
reflects the cost of examining the corresponding object header for every checkpoint entry in
the previous table in order to obtain the current version ol the object. The value of X in this
tern is very close to 1. for the same reason as was given in the previous section, ‘The fourth
ernn, U/ZP . reflects the cost of writing an updiated entry for every checkpoint entry that was
¢
not deleted in the previous checkpoint epoch. The fifth term, ('\“A(). reflects the cost of
creating new cheekpoint entries for newly created objects. This term does not include the

cost of reading an OHS page since that cost is attributed 1o the creation of the object.

The multiplicr, R/ZD, represents thie number of checkpoint epochs that eaist in VS per
crash. Since checkpoint epochs bear no relationship 1o crash events. this ratio is variable, In
other words, checkpoint epochs can be created at any arbitrary rate.  Thus, since it is
desirable to minimize the repository’s response time for satisfying requests, the decision
about when to create a new cheekpoint epoch will probubly be made dynamically by the
repository. It will not be a time dependent dectsion but instead will depend upon D (the
distance between the current end of VS and the limiting CEM). and upon the expected

usage of the repository.

The deciston will depend upon D because the smaller D) is. the smaller the values for II)'
VD. and Ol) will be. In other words, the faster new checkpoint epochs are created, the
smaller the total cost of the recovery manager will be since the recovery manager will have
fewer version images to examine in VS, Nevertheless. this will only decrease the total
response time cost il object headers get lost due to the crash. since if none are lost then the

recovery manager does not scan all the way to the limiting CEM.

However. there is a disadvantage to creating checkpoint epochs at a fast rate: as the rate
ol creation of checkpoint epochs increases. the ratio. R/, increases, and therefore. so does
the total cost of the checkpoint manager per crash recovery ¢poch. It the checkpoint
manager docs its work in the background wihile the repository is satisfying external requests,
the cheekpoint epachs sivould not be created at a very fust rate since the cheehpoint manager
will be sharing the disk resources with the processes that are handling the external requests,

and thus, will increase the repository’s response time. However, if the repository has
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cnough idle time so that the checkpoint manager can do most of its work during that time,
then checkpoint epochs can be created at a faster rate since the only cost of the checkpoint
manager that will affect the request response time is that of creating checkpoint entries for

newly created objects.

Thus. the repository decides to create a new checkpoint epochi if cither of the following
o situations arise. First, if the repository eapects to be idle for some time. the checkpoint
manager has finished updating the old table, and some minimum number of new versions
have been created in the current checkpoint epoch, then the reposito 'y creaies a new
checkpoint epoch.  Sceond. there s probably some maximum distance over which it is
desirable for the recovery manager to ever have to search (because of the time it takes to do
all of the necessary disk aceesses). so it D reaches half of this muvimuin, the repository
creates a new checkpoint cpnch.17 Thus. the repository creates new checkpoint epochs at the

fastest rate that optimizes the repository’s time under all conditions,

The parameters specifying the maximum size of D and the minimum number of new
versions that should have been created in the current checkpoint epoch will be chosen
arbitrarily in the initial implementation of the repository.  Then, once it is possible to
measure the actual costs and response times of the repository, these parameters will be

adjusted.

17, L . Lo . . .
he reason why the cruciaf distance is half of this maximum tather than the actual mavimun is beeause the

recovery makieet has o search thiough alt serston images i the previous cheekpoint epoch in addition (o the
curient epuch, (the table for the current epoch s not complicte unat the epoch is terminated).
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Since the repository will probably have a reasonable amount of idle time (at least in the
wee hours of the morning). the checkpoint manager will do most of its work at that time.
The only work that must be done while the repe <itory is satisfying requests is the creation of
new object headers. Thus. the average response time cost, ('Cmr. of the checkpoint manager

per crash is:

C =(C AOXR/D)
cor w

One should obscrve that only a small percentage of the totat cost ac-tually affects the

repository’s response time,

5.3 Average Cost of Recovery Per Request

It would be usclul now. to analyze how much the recovery and checkpoint managers cost
per request that the repository processes because then we can analyze how these managers
affect the repository’s response time per request.  First. it is necessary to caleulate the costs

of reading and writing VS and OHS pages.

The costs of VS page reads and writes are:
. *
C = 1disk access + [page recovery]
vr
. . *
C = 4 disk access + [repeated diskacceses)
Yw
Normally. ouly one disk access is done in order to read a VS page. since only one copy of
the page has to be read. However, if a bad VS page 15 encountered, then there is an
additional cost. represented by the term [page recovery]. which is the number of disk
accesses that must be done in order to recover the page. Since the probability of disk pages

decaying is very small, this term will rarely be included in the cost.

In order 1o write a VS page. at Icast 4 disk accesses must normally be made. te., a read

and write for cach of the 2 copics of the page that are maintained.  However, these 4 disk
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aceesses represent the total cost of a VS write, Le.. the total work that must be done. Since
there will probably be two devices performing the writes of both copies in parallel, the
response time cost of a VS write will only be 2 disk accesses. Furthermore, only in the case
where the read back after a write indicates that the write was not done properly and has to
be repeated. will the term [repeated disk acesses] become a component cost of a VS page

write. Once again. the probability of the original write not succeeding is minimal.

On the other hand. the costs of CHS reads and writes are;

C = Ldisk access
or
C = 1 disk access
OW
Since OHS is careful (standard disk) storage. cach page that is read or written requires

only asingle disk access. 'S

Now, the average total cost of the recovery and checkpoint managers per request

! (excluding all starred terms) is:

: +C )y/Q = 1 /P + V !
! (Crml F (rnu) Q { N i N + EN * ON
It /P+vV +E +0]1+
D D D D
[R/D)5A0 + QU-A0 + BY/P + U + B]}/Q
c

where Q = the total number of requests satisfied per crash

! Note that the actial cost of the OHS read and write opetations will be fess tian or equal 1o 1 full disk access
since the OHS page are not read (writien from (od the disk every ume aread (wiie) is done. Often, the page 10
be read (writien) will be found in o primary butter. However, it the object header table is big then the reduction

in costs will be small.

l <




However the average response time cost of the recoveny and checkpoint managers per
request is only:

) = +V or L /P V :
(C +C yQ [IN/P N+IN+I(D D+ID)+

rmt cmr

200R/D)/Q

From this equation one can observe how the response time delay that is attributed to
recovery Nuetuates with the varying characteristics of the requests and objects that are sent
10 the repository.  One thing to 1 otice is that this response time delay decreasés as the
average size of the clients” objects increse. since the farger the objects are. the smaller the
value of V. and VD will be. Aaother thing o notice is that the response time delay
INCreascs w;lh the rate ol object creation, since the fuster new objects are —reated. the larger

the value of AO will be.

The following example will give the reader a better feeling for what the actual response
time delay that is attributed to recovery per request might be. By cheosing an arbitrary buat
reasonable number of requests that might be processed and a reasonable number of objects
that might be valid within a single recovery epach. approvimate values can be extrapolated
for all of the terms in the cost equations. Thus. for this example it will be assumed that the
repository processes 20.000 requests per crash and that 10.000 objects are current at any
given time. The table in Figure 5-1 shows the distribution of request types among the
20.000 requests that are processed and the table in Figure 5-2 shows what values were

extrapolated for the variables used in the equations.

Using these valucs, the average total cost of recovery per request will bes:

I

(C +C YQ

rmt cmt

15410 disk accesses/ 20000 requests

I

J7 disk accesses/request




Type

Amount
Processed

cteate object
delete-object
create-token
read -version
create-comrec
aboit comrec
commit-comrec
add-ref
delete-ref

test

1000
1000
5000
5000
2000

200
1750
2000

Figure 5-1: Request Distribution

On the othier hand. the average response time cost of recovery per request will be:

C +C 'mr)/Q

rmt

i

2050 disk accesses/20000 requests

.1 disk accesses/request

Thus. in comparison with the average response time costs of processing rcad-version and

create-token requests, which are 2 disk accesses and 1.4 disk accesses, respectively, the

additional responsc time cost attributable to recovery in the normal case, .1 disk accesses, is

not very significant.

5.4 Comparative Cost of Another Type of Recovery

To put these costs of recovery into perspective, it is necessary to compare them with

simifar costs of an alternate method of recovery for the repository. The repository using the

recovery mechanisms described in this thesis will be called R, and the alternative will be

called R, Bricfly, the design for R is o implement OHS as reusable stable storage. In R,
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Variable Value
'D 15000
PC 5
VD 5500
ED 10000
OD 10000
at 200
U 9000
B 1000
& 1000
R/Q 1
Pc 50
NN 10
VN 50
| N 35
EN 5

Figure 5-2: Extrapolated Valucs for Variables in Cost Equations

no request is confirmed until the appropriate changes are written into both OHS and VS.
Also, all changes made to OHS for a single request are written into OHS from the page
buffers in an atomic fashion and are not written until the necessary changes have been made
to VS.

Using this alternative design of the repository, it is possible to climinate the checkpoint
manager since object headers will not get lost.  Also, the recovery manager can be greatly
simplificd duc to the fact that in fulfilling a request. the repository does not change OHS
until VS is modificd. Thus. if the repository crashes betore updating any part of OHS, then
the request will not have been confirmed, OIS will reflect the current state of the data, and
the version(s) added to VS will be ignored since the object headers were not changed to
include them. In other words, object headers will not become obsolete so there is no need

for the recovery manager to scarch through VS in order to examine the versions and certify
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the corresponding object headers.

Thercfore. the only responsibility of the recovery manager in R is o update State Storage
belore the repository resumes its normal activity.  However, since recovery of State Storage
is caactly the same (or both R and R’ its cost will not be included in this comparative
analysis. Furthermore. tor this analysis it is assumed that the only differences between the
o repositories are those that have been deseribed above. Thus, all other costs. such as
those for communications, are assumed o be the same in both repositories and will not be

mncluded in this analysis.

Superficially. it might appear as ir R uses a more efficient method of recovery. However,
the cost of maintaining OHS as stable storage in R far outweighs the costs of the more
explicit recovery mechanisms used in R, This can best be shown, by comy aring the costs of
satisfying the same types of requests in both repositories (adding the average cost of the

recovery mechanisms per request o the cost of satislying requests in R).

In order to compare these costs. the costs of reading and writing VS and OHS pages in R
must first be caleulated. Since there is no difference in the structure of VS for R and R,
there is no difference in the costs of reading and writing the VS pages for both repositories.
Therefore, va and C” will be used to represent the costs of VS writes and reads for both
repositories. (However, for all other costs. any symbols with a prime mark added to them
apply to R').

The costs of the OHS rcad and write operations in R are greater than those same costs in
R. These costs in R are:

C‘or = 2 disk accesses + [1 disk access]”

' . . *
C = 4 disk accesses + [repeated disk accesses]
ow

An OHS read in R requires at least 2 disk accesses since OHS is reusable stable storagc.'q

9 Lot . . . . . .
! Note that in R the cost of an OHS read will probably be slightly less than 2 disk accesses since the page
might he tound in the buffer. However, since O118 in R s stable storage, an QOHS page has to be witten to the

disk every time it is modificd. Thus, C - will not be reduced at all.
ow
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Thus, both copics of an OHS page must be read and compared. since it is possible for both
copies of an OHS page to be valid but different from one another (if the repository crashes
in between the writes of the two copies). In this case, where both pages are valid but
different. or in the case where one of the pages is bad. one additional di<k access is required

in order to write the recovered copy of the pugc.zo

On the other hand. the cost of the OHS write in R requires 4 disk accesses because two
copies of the page have to be written sequentially and each copy must be read back in order
to ensure that the writes were done correctly. However, the term, [repeate d disk accesses] is
only included in the cost if one of the reads (after a write) indicates that the write was not

done correctly and has to be repeated.

Now that the underlying costs of the VS and OHS read and write operations in R are
understood, it is possible to analyze the comparative costs of processing the same type of
request in the two different repositories. Two comparisons will be done. one for a create-

N . . - for a create-obicct e a4 21 Tl valiree (0 he e\ e i
token request and another for a create-object request.” The values from the example in
Section 5.3 will be used as the average costs of recovery per request in R, Thus, .77 will be
used as the average total cost per request and .1 will be used as the average response time
cost per request. In R, there is no additional cost of recovery per request that has to be

added into the cost of sutisfying a request.

20

Note, that in order to simplify this analysis. the (rare) case wheie a chain crosses pape boundaries is ignored.
Thus, it assunied that all buckets in asingle chain are fully contiined within a single page.

2 . . . . . .

llhc difference in costs for read-version or defete object requests is the same as for create-token requests,
even though the individual costs difter. Thus, the comparative analysis tor these (wo G pes of requests will not
be done in this thesis.
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The average total cost of processing a create-token request (assuming that the token fits
on a single page) is as follows:

C = cost of create-token request in R
crikn

=C +C +(C /P)+
yw

or OW
average total cost of recovery per request
= 3.57 disk accesses

-

‘
cost ol create-token request in R

Il

crikn
=C +C +(C /P)
ow VW

or

= 6.80 disk accesses

The fotal work that has 10 be done is less in R than in R. Furthermore, there is an even
greater difference in the average response time costs. In order to obtain the response time
cost of satisfying a create-token request in R’. the total cost is reduced by half of the cost of
the VS page write. since there will most likely be two devices performing the write and read
of both copies in parallel. Thus, the response time cost in R is 6.40 disk accesses. In R,
though. the total cost is not only reduced by 1/2 of the cost of the VS page write, but in
addition. is reduced by the decrease of .67 in the toial recovery cost per request (from .77 to
as described in Section 5.3) and by the cost of the OHS page write (which is 1 disk access),
since the repository docsn’t wait for OHS page writes to complete before responding to
requests. Thus. the resulting response time cost of satisfying a create-token request in R is
L5 disk accesses. This is a significant improvement over the cost of 6.40 disk accesses in R
Even for a given crash where object headers are lost. the average response time per request

would be 2.42. which is still much better than 6.40 for R .
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Next. in the case of a create-object request. the average fotal costs are:; ‘
| | i
c = cost of create-object request in R
croby
=C +C +Q2C /P)+ ~
or ow vw ‘
average cost of recovery per request
= 4.37 disk accesses
{
C . = cost of create- bject request in R
crobj
=C +C +C /p
or ow vw
= 0.80 disk accesses ’ '
E
Thus, even though the cost of creating an object in R includes two times the cost of
writing a VS page (a checkpoint entry has to be created for the new object in addition to f
writing the version). the total cost of creating an obiect in R is less than in R Also, there is U'i
an cven greater difference in the two response time costs since the cost in R drops to 1.90 5?
disk accesses wherceas it only drops to 6.40 disk accesses in R '
9
Thus, in this example, both the total costs and the response time costs are less for cach
request satisfied in R than in R. Even in a rare case where the recovery manager has o
recheck all object headers and an additional 2,12 disk accesses must be added to the costs ]
(the starred term in the total cost of the recovery manager, given on page 99). the costs are | !
less in R than in R. The response time cost of the creatc-object request. as well as both
types of costs of a create-token request are still significantly less in R than in R, i 'g
Note, that R is not as sensitive to the average size of the objects and the read-
version/create-token ratio as R is, nor is it sensitive at all to the rate of object creation, sinee ’F ;

it docs not include a recovery cost term.  However, in R, under normal circumstances
(where no object headers are lost), the sensitivity of the response time to these variables is ‘

still not enough to make the recovery mechanisms in R more cfficient than those in R, with

respect to response time.




5.5 Summary

In summary, it has been shown that on the average. although the total cost of these
recovery mechanisms is fairly steep. the response time costs of these recovery mechanisms is
insignificant. However. it is necessary to keep in mind that these costs are averages. These
delays will vary with the requests.  The initial requests that arrive after the crash will
expericace much more response time detay due 1o the crash than the average delay costs.
Nevertheless. once the recovery manager completes its scan. no subsequent requests
experience any eatra delay due to recovery, except for create-object requests. which require

. . . . 22
that checkpoint entries be created before the response is sent. =,

It has also been shown that in the example environment, these recovery mechanisms are
more efficient than those used in R in atmost all respects (lotal and response time costs of
all types of requests).  Even in the absolute worst case where unassigned or deleted uid's are
specified in requests, R is more efticient than R. 1t is probable. though. that in an
environment where the repository is utilized very heavily, 24 hours a day. and where the
objects arc fairly large, that R would provide a more efficient storage service. Although the
calculations are only valid for our one example, we have erred in a conservative direction
for the example numbers. 1n general, the recovery cost will probably be less than that in the

cxample.

rinally. if there is any bottlencck in these recovery mechanisms it will be the checkpoint
manager since it requires a lot of work to be done just to prevent the worst case from being

intolerable. It may have o be made more efficient if certain unfavorable conditions prevail.

by , . . . .

1t can be arranged so that cheekpoint entries of newly created ohjects are written on the same page as the

versions of the objects. Then there will not even be any delay atributable to recovery for the create-object
rcquests
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Chapter Six

Conclusion

In this thesis, a coherent set of recovery mechanisms for the Swallow repository was
presented. Inorder to sum things up. this final chapter reflects back on the original design

goals and then offers suggestions for further work.

6.1 Summary of Original Geals

Recall that the most important goals were to ensure that the repository’s data is restored

o an internally consistent state and to support the global recovery mechanisms in order o

ensure external consistency. The general strategy used to fulfilf this goal is o maintain all of

the essential data (repository s global state. values of clients” objects and state of the commit
records) in stable storage and to restore all awnifiary data from this duia in stable storage.
Thus, before any auxiliary data is used in order to satisfy external requests, it is always
compared with the stable storage data, either eplicity (by scanning sequentially through
VS) or implicitly (by comparing the REN's of the repository and the object header). and is
brought up to date, if necessary. Furthermore, no data is ever released to external nodes
until the state of the corresponding commit record is known to be committed. thus. abiding

by and supporting the global recovery mechanisms,

The next goal was to provide minimal disruption to the ongoing activitics in the othor
Swallow nodes by minimizing the immediate recovery that has to be done before the
repository can begin accepting requests. The strategy used here is to restore the VS write
pointer, the repository’s REN and the Tast uid assigned (to an object or commit record). then
to get the checkpoint manager started frony where it et oft before the crash and finally, o
cncache the entire global state in volatile storage and start aceepting requests. The

remaining data. consisting of the object header and commit record tables, are recovered
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gradually during the course of the repository’s normal activities.  Thus, the immediate
recovery is trivial.

OF course. even though the repository begins accepting requests fairly soon after a crash,
there sill may be further delay in returning a response. sinee the data regrired o satisfy the
request iy reduire recovery. However, the third goal was to minimize this response time
delay attributable o recovery. Thus, this goal is met by using non-crash 1ecovery epochs in
addition 1o crash recovery epochs, in order 1o mark the last point in VS when OHS s
guaranteed o be consistent with V4 (providing that no object headers ave ‘ost). Then, if the
repository has frequent idle period . it will only be necessary 1o scan through asery small
region of VS before a request can be satistied and confirmed.  Purthe rmore. once that
region of VS has been scanned. there will be no additional response time delay attributable

10 recovery. Inother words. all requests will be satisfied at full speed.

6.2 Future Work

The first step.that should be taken, now that the recovery mechanisms have been
designed. is 10 use these recovery mechanisms in the repository.  Once this is done. the
repository’'s performance can be gauged under various conditions. both normal and

stressful, so that all parameters can be fine tuned.

The analysis in Chapter 5 was only intended to give a feel for the costs of recovery. A
better analysis coutd be made by measuring and comparing the actual response time delays
of requests arriving immediately after restarting and those arriving some time  later.
Another interesting measurement would be how the lfength of time in which the recovery
manager performs its required scan through the non-crash recovery epoch preceding the
crash recovery epach varies with different levels of repository atilization.  These are only

examples of the various anlyses that can be done once actual measurements can be taken.

In addition. the hehavior patterns of the users can be monitored in ovder to ligure out
what the weaknesses of these mechanisms are. For example, il the repository is more

heavily utilized than expected, then the checkpoint and recovery epoch mechanisms muy




require modification. Howevei if the usage s as expected, i.c.. tong periods of idle time

during the carly morning hours and frequent short periods of idle time through the rest of

the day. then these mechanisms should work well,

Another interesting pattern to observe would be the ratio of retransmissions vs. abort-
commit-record requests that the repository receives after a crash. If this ratio heavily favors
retransmissions then it may be desirable to explore methods for recovering commit records
whose final state had not been decided before the crash. other than automatically aborting

them.

Finally. new classes of algorithms have been recently developed for hash tables whose
size changes dynamically.  These algorithms may be incorporated into a subsequent
implementation of the object header tabie in the Swallow repository. 1 so, then it will be
necessary to examine these algorithms for potential difficeltics that may be caused by
failures and then to modify them so that they can detect and correct any errors before these

crrors wieak havoc within the repository.

6.3 Generalizations

In a more general sensc. the techniques used in the repository for reliably storing,
accessing and recovering the data may be applicable to other systems.  For example. in the
repository, critical data is maintained in stable storage while the optimized mappings to this
data are maintained in carclul storage. This type of strategy for storing data would be uscful
in any system that contains some data that cannot be lost. The only deterrent to using this
strategsy would be the capense of stable storage.  Thus. future work should be directed
towards reducing the cost of the stable storage read and write operations without decreasing

the reliability of the stomge.23

In addition, the hash table algorithms developed here may Icad o convenient methods

3

“In fact, iFthe stable storage operations could be made safficiently inexpensive, then there would be no need
to have carcful storage, at all.
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for keeping database indices, since these algorithms are efficient and self-recovering. ‘The
essential property of the hash table that allows these algorithms to use trivial error detection
and correction procedures is that the hash table does not have to be perfectly reliable. [n
other words. it is acceptable o lose data in the hash table, once in a while. Thus, as long as
the hash table data can be tecovered from more reliable data sources. if necessary, then a
database system can use these algorithms, thereby climinating the need to cheek the entire
structure of the table of indices tor potential damage afier a crash, since the hash table

afgorithms do this check implicitly.

Finally. the notion of ontine recovery during the normal course of operations is one that
would be extremely useful in all computing environments.  In order for online recovery to
be practical in any given system, cheap methods for detecting the need for recovery as well

as for implementing recovery must be developed for that particular system.

In conclusion. there is still work that has to be done in order to fine-tune and perfect the

recovery mechanisms within the repository. Even so, these mechanisms can be generalized

and applied to other systems in order to improve the standard recovery procedures.
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